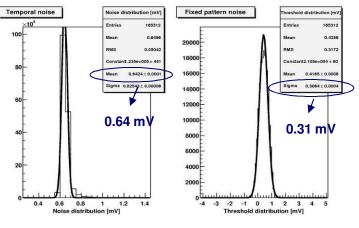
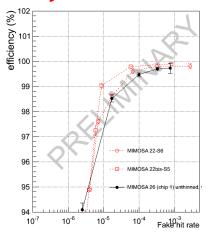


Development of fast and high precision CMOS pixel sensors for an ILC vertex detector

Christine Hu-Guo (IPHC)
on behalf of IPHC (Strasbourg) & IRFU (Saclay) collaboration

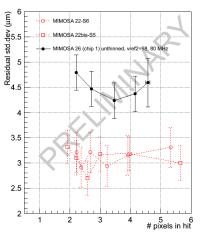
<u>Outline</u>


- MIMOSA26 design and test results
 - Comparison normal and high resistivity EPI
- Sensor design plan for the coming 2-3 years
 - Innermost layer sensors design
 - Outer layer sensors design
- Conclusion

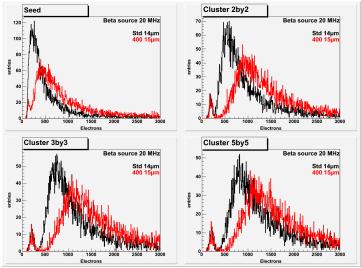


Development of CMOS Pixel Sensors for Charged Particle Tracking

- 2009, an important year for CMOS pixel sensors R&D: MIMOSA26 has been designed, fabricated and tested within the EUDET program
- MIMOSA26 is a reticule size MAPS with binary output, 10 k images / s
 - 🤟 Pixel array: 1152 x 576, 18.4 μm pitch
 - ♦ Architecture:
 - Pixel (Amp+CDS) array organised in // columns r.o. in the rolling shutter mode
 - 1152 ADC, a 1-bit ADC (discriminator) / column
 - Integrated zero suppression logic
 - Remote and programmable
- Lab. and beam tests: 62 chips tested, yield ~75%



Efficiency 99.5% for fake rate 10⁻⁴


Single point resolution ~4 µm

3.7 mm

MIMOSA26 Test

- Standard EPI layer (fab. end 2008) v.s. high resistivity EPI layer (fab. end 2009)
 - ♦ Charge collection & S/N (Analogue output, Freq. 20 MHz)

EPI layer	Standard (~10 Ω.cm) 14 μm			High resistivity (~400 Ω.cm)			
	Seed	2x2	3x3	EPI	seed	2x2	3x3
Charge Collection (⁵⁵ Fe source)	~21%	~ 54 %	~ 71 %	10 μm	~ 36 %	~ 85 %	~ 95 %
				15 μm	~ 31 %	~ 78 %	~ 91 %
				20 μm	~ 22 %	~ 57 %	~ 76 %
S/N at seed pixel (106Ru source)	~ 20 (230 e ⁻ /11.6 e ⁻)			10 μm	~ 35		
				15 μm	~ 41		
				20 μm	~ 36		

- Radiation test under way for applications more demanding than ILC
 - Ionising TID: 150 K, 300 K, 1M Rad
 - Non Ionising NIEL: 3x10¹², 6x10¹², 1x10¹³, 3x10¹³ N_{eq}/cm²
- MIMOSA26 can be operated at a high readout speed
 - \lor Clock frequency: from 80 MHz_{typ.} (~110 μs) up to 110 MHz (~80 μs)
- → MIMOSA26: design base line for STAR Vx upgrade, CBM MVD Its performances are close to the ILD vertex detector specifications

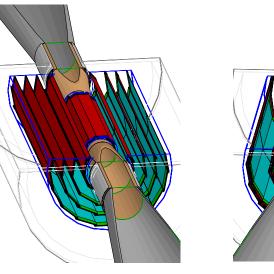
ILC VTX: R&D of CMOS Sensors

Innermost layer sensors:

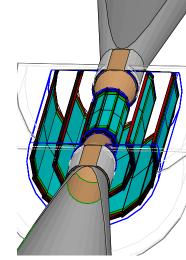
 $t_{int.} \sim 25 \, \mu s$ $\sigma_{sp} < 3 \, \mu m$

R&D effort on high readout speed design

- Double-sided readout (for both design options)
- Elongated pixels (for 3 double layers option: time stamp tier)


Outer layer sensors:

 $t_{int.} <\sim 100 \, \mu s$ $\sigma_{sp} \sim 3-4 \, \mu m$

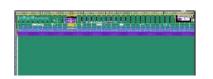

R&D effort on low power consumption design

- Single-sided readout (for both design options)
- 4-bit column-level ADCs

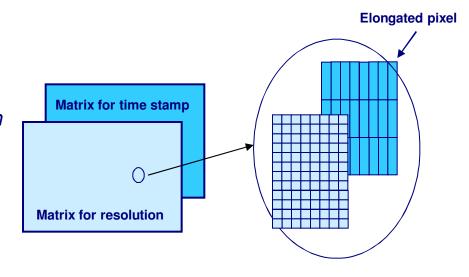
ILD design: 2 options

3 double layers

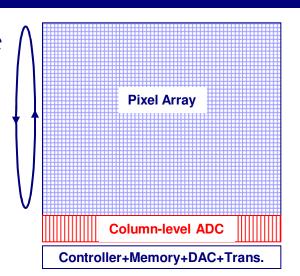
■ Power consumption:


 $P_{diss} < 0.1-1 W/cm^2 (\times \sim 1/50 duty cycle)$

Innermost Layer CMOS Sensor's Development


- 1st R&D line: double-sided readout
 - Based on architecture of MIMOSA26
 - Rolling shutter readout mode + A/D conversion → binary output + zero suppression
 - Pixel array: ~ 14 μm pitch
 - Active area: ~ 9 x (~ 20) mm²
 - $t_{int} < \sim 40-60 \ \mu s$
 - $P_{diss} < 1 W/cm^2 (x \sim 1/50 duty cycle)$

- Time stamp tier for 3 double layers option
 - **E**x: 14 x (4 x 14 μm)
- $\Leftrightarrow t_{int} < ~10-15 \,\mu s$
- High resistivity EPI process useful
 - High charge collection efficiency

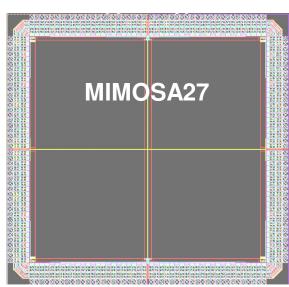


"Plume" Project 🗩 Integration topic Collaboration: Strasbourg, DESY, Oxford, Bristol, ...

See Nathalie Chon-Sen's talk:

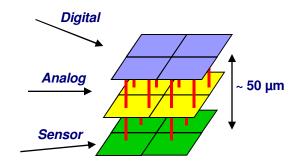
ILC Outer layer CMOS Sensor's Development

- Large pitch pixels associated with column-level ADC
 → power consumption reduction
- Single-sided readout
 - ♦ Pixel array: 576 x 576, pitch 35 μm
 - 4-bits ADC / column
 - $t_{int.}$ ~ 60 100 μs
 - $P_{diss} \leftarrow 0.2 \text{ W/cm}^2 \text{ (} \text{ x} \sim 1/50 \text{ duty cycle)}$



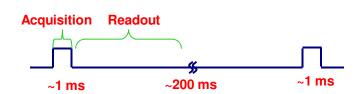
- Different column-level ADC architectures have been investigated in IN2P3-CEA collaboration
- Taking integration experience of MIMOSA26, ADC's architecture will be extended to several hundreds ADCs converting all signals of a row simultaneously
 - Noise from substrate coupling
 - ⋄ Coupling between ADC

 - ♥ Offset compensation
 - Clock and control signals management
 - Submission of a small sensor but a sizable prototype: pixel array + column-level ADC


Exploration of new process

- → Using a smaller feature size CMOS technology: 0.18 μm
 - High speed operation inside chip
 - Surface reduction in digital design
 - Reduce power consumption ...
 - ♦ Offer more metal layers for interconnection → decrease dead zone
- MIMOSA27 in a 0.18 μm process (up to 6 metal layers) will be submitted on April 9th, 2010
 - √ 10 mm², 20 μm pitch, 4 sub-matrices of 64 x 64
 - Up to16 options:
 - Diode size and type of configuration
 - □ 3 T and self-bias
 - In pixel amplification
 - Study:
 - Charge collection efficiency
 - Technology features
 - Signal to noise ratio
 - Radiation hardness
 - o ...

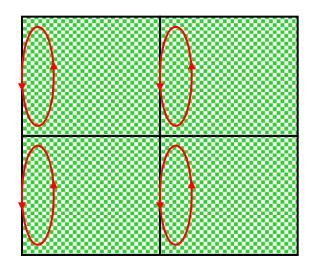
Using 3DIT to improve MAPS performances (1)

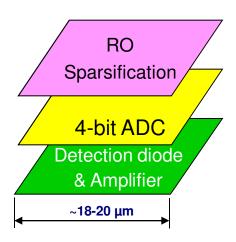

- 3DIT are expected to be particularly beneficial for MAPS:
 - ♥ Combine different fabrication processes → Split signal collection and processing functionalities → use best suited technology for each Tier :
 - Tier-1: charge collection system → Epitaxy (depleted or not) → ultra thin layer → X_0 Ψ
 - Tier-2: analogue & mixed signal processing → analogue, low I_{leak}, process (No. of metal layers)
 - Tier-3: digital signal processing & data transmission
 - (Tier-4: data transmission, electro-optical conversion ?)
- > digital process (number of metal layers) feature size → fast laser driver, etc.
 - Resorb most limitations specific to 2D MAPS
 - Dead surface
 - Power consumption
 - Readout speed
 - ...

- 2009: run in Chartered Tezzaron technology
 - ⋄ 3D consortium: coordinated by FermiLab
 - ♦ 130 nm, 2-Tier run with "high"-res substrate (allows m.i.p. detection)
 - Tier A to tier B bond → Cu-Cu bond

Using 3DIT to improve MAPS performances (2)

- Delayed R.O. Architecture for the ILC Vertex Detector (designed & submitted)
 - ⋄ Try 3D architecture based on small pixel pitch, motivated by :
 - Single point resolution < 3 µm with binary output
 - Probability of > 1 hit per train per pixel << 10 %
 - \rightarrow 12 µm pitch :
 - $\sigma_{\!sp}$ ~ 2.5 μ m
 - Probability of > 1 hit/train/pixel < 5 %


♦ 3D 2-tier process


- Tier-1: A: sensing diode & amplifier, B: shaper & discriminator
- Tier-2: time stamp (5 bits) + overflow bit & delayed readout
- → Architecture prepares for 3-Tier perspectives : 12 µm
 - Tier-1: CMOS process adapted to charge collection
 - Tier-2: CMOS process adapted to analogue & mixed signal processing
 - Tier-3: digital process (<< 100 nm ?)

Using 3DIT to improve MAPS performances (3)

- MAPS with fast pipeline digital readout aiming to minimise power consumption (R&D in progress)
 - Subdivide sensitive area in "small" matrices running individually in rolling shutter mode
 - Adapt the number of raws to required frame readout time
 - → few μs r.o. time may be reached
 - ⇒ Design in 20 μm²:
 - Tier 1: Sensor & preamplifier (G ~ 500 μV/e⁻)
 - Tier 2: 4-bit pixel-level ADC with offset cancellation circuitry (LSB ~ N)
 - Tier 3: Fast pipeline readout with data sparsification
 - $\sigma_{sp} \sim 2 \mu m$ $T_{int.} < 10 \mu s$

Conclusion

- MIMOSA26's performances are close to ILD vertex detector specifications
 - → Architecture will evolve to meet VTX performances
 - Innermost layer: double sided readout → readout speed trade-off
 - ♥ Outer layer: matrix + column-level ADC → power consumption trade-off
- Fabrication processes with high resistivity EPI layer will improve read-out speed and radiation tolerance
 - ⋄ Time stamp layer
- Integration of column-level ADCs with pixel array in progress
- → Prototyping of inner and outer layer sensors expected to be nearly finalised by 2012 for ILD-DBD
- Translation to 3DIT will resorb most limitations specific to 2D MAPS
 - Still many difficulties to overcome
 - ♥ Offer an improved read-out speed : O(µs) + Lower power consumption