AHCAL Energy Resolution

Katja Seidel

MPI for Physics & Excellence Cluster 'Universe'
Munich, Germany
for the CALICE Collaboration

International Linear Collider Workshop 2010
Beijing, China
27 March 2010

Outline

- 1 CALICE calorimeter prototypes
- 2 Calibration of the AHCAL
- 3 Electromagnetic Showers
- 4 Hadronic Showers Software Compensation
 - Global Method
 - Cluster Energy Density Weighting
 - Neural Network
 - Local Method
 - Single Cell Energy Weighting
- **5** Conclusions

CALICE Calorimeter Prototype Program

Extensive Test Beam Program

■ DESY: 2006

CERN: 2006, 2007 FNAL: 2008, 2009

- Particle Types: $\mu, e^{\pm}, \pi^{\pm}, p$
- Particle Energies: 1 GeV to 80 GeV

CALICE Calorimeter Prototype Program

CALICE Analog HCAL

- Iron absorber structure
- Active layers: scintillator tiles
 - Tile sizes: 3×3 cm², 6×6 cm², 12×12 cm²
 - Light collection via wavelength shifting fiber
 - Readout via SiPM

■ High granularity in AHCAL center
→ in the shower core

Calibration of the AHCAL

- Signal Saturation
 - SiPM pixel number limited → only limited number of photons can be counted
- Auto-calibration of SiPM gain:
 - Low-intensity LED light coupled into each detector cell
 - Gain measurement
- MIP-Calibration with Muons
 - Complete detector illuminated with high energy muons
 - Equalization of cell response by matching the MPV position
- Temperature effect correction
 - SiPM gain
 - SiPM amplitude
 - ⇒ All effects included into event reconstruction and Monte Carlo digitization.

Calibration of the AHCAL

- Signal Saturation
 - SiPM pixel number limited → only limited number of photons can be counted
- Auto-calibration of SiPM gain:
 - Low-intensity LED light coupled into each detector cell
 - Gain measurement
- MIP-Calibration with Muons
 - Complete detector illuminated with high energy muons
 - Equalization of cell response by matching the MPV position
- Temperature effect correction
 - SiPM gain
 - SiPM amplitude
 - ⇒ All effects included into event reconstruction and Monte Carlo digitization.

Calibration of the AHCAL

- Signal Saturation
 - SiPM pixel number limited → only limited number of photons can be counted
- Auto-calibration of SiPM gain:
 - Low-intensity LED light coupled into each detector cell
 - Gain measurement
- MIP-Calibration with Muons
 - Complete detector illuminated with high energy muons
 - Equalization of cell response by matching the MPV position
- Temperature effect correction
 - SiPM gain
 - SiPM amplitude

⇒ All effects included into event reconstruction and Monte Carlo digitization.

27 March 2010

Electromagnetic Showers in the AHCAL

Positron test beam data from 10 GeV to 50 GeV

Comparison to Monte Carlo data

- Data taking without ECAL in front of HCAL
- Linearity of detector response of 1.5 % up to 30 GeV
- Non-Linearity at higher energies not yet reproduced in $MC \rightarrow Saturation handling$
- Energy Resolution Data

Fit in the range from 10 GeV to 30 GeV with: $\frac{\sigma}{E[GeV]} = \frac{a}{\sqrt{E[GeV]}} \oplus b$

$$a = 22.5 \pm 0.1(stat) \pm 0.4(syst) \%$$

 $b = 0.0 \pm 0.1(stat) \pm 0.1(syst) \%$

Hadronic Showers

Detector Response

- ► CALICE: non-compensating sampling calorimeter
- ► Calorimeter response to hadrons is smaller than to electrons of the same energy
- ▶ CALICE AHCAL $\frac{e}{\pi} \sim 1.2$

Software Compensation

- ⇒ Identification of electromagnetic and hadronic shower component fractions
 - ⇒ Improve energy resolution
 - ⇒ Improve linearity of detector response

Method:

- Electromagnetic showers tend to be denser than purely hadronic ones
- Correlations between reconstructed energy and energy in high density shower regions

⇒ Test Local and Global Techniques

Cluster-Based Software Compensation

Two global methods based on cluster as a whole - no subcluster analysis Look at global cluster properties

- Shower reconstruction in AHCAL and TCMT Showers are required to start in the AHCAL
- Determination of shower variables from test beam and simulated data
- 3 Analyses developed on Monte Carlo data FTF BIC
 - Energy density weighting technique
 - Neural Network from TMVA
- 4 Application of weight or trained neural network on test beam data

Hadronic Showers with high energy density ρ

- ⇒ Higher electromagnetic content
- \Rightarrow Higher reconstructed energy

$$E_{rec}[GeV] = E_{rec}[MIP] \cdot \omega(\rho, E)$$

Hadronic Showers with high energy density ρ

- ⇒ Higher electromagnetic content
- ⇒ Higher reconstructed energy

$$E_{rec}[GeV] = E_{rec}[MIP] \cdot \omega(\rho, E)$$

Individual weights with minimization of function

$$\chi^2 = E_{rec} \cdot \omega - E_{beam}$$

Hadronic Showers with high energy density ρ

- ⇒ Higher electromagnetic content
- \Rightarrow Higher reconstructed energy

$$E_{rec}[GeV] = E_{rec}[MIP] \cdot \omega(\rho, E)$$

Individual weights with minimization of function

$$\chi^2 = E_{rec} \cdot \omega - E_{beam}$$

 \blacksquare Parameterization of the individual weights via $\omega = a(E) \cdot \rho + b(E)$

Hadronic Showers with high energy density ρ

- ⇒ Higher electromagnetic content
- \Rightarrow Higher reconstructed energy

$$E_{rec}[GeV] = E_{rec}[MIP] \cdot \omega(\rho, E)$$

Individual weights with minimization of function

$$\chi^2 = E_{rec} \cdot \omega - E_{beam}$$

- Parameterization of the individual weights via $\omega = a(E) \cdot \rho + b(E)$
- Parameterization of energy dependence with function for a(E) und b(E), $E=E_{rec}$

⇒ Determination of weights independent of beam energy!

Cluster Energy Density Weighting - Results

Energy Resolution:

- Weight parametrization from Monte Carlo derived
- Weights applied on test beam data
- Energy resolution improvement: \rightarrow approx. 15 %

beam Energy [GeV]

Cluster Energy Density Weighting - Results

Linearity of detector response:

- Significant improvement of linearity of detector response
 - \rightarrow better than 4 %
- Test beam data: π^+ and π^- runs. Elimination of proton content of π^+ runs should improve the linearity even further.

Neural Network of TMVA

TMVA - Toolkit for Multivariate Data Analysis

- 6 input variables
 - Reconstructed energy
 - Cluster volume
 - Cluster length
 - Mean cluster width
 - Cluster energy in last 5 AHCAL layers
 - Cluster energy in Tail Catcher
- Target variable: beam energy
- Output value: reconstructed energy
- ⇒ Trained Neural Network applied on test beam data

Neural Network Technique - Results

Energy Resolution:

■ Energy resolution improvement: → approx. 23 %

Neural Network Technique - Results

TMVA

Linearity:

- Significant improvement of linearity of detector response
- \rightarrow better than 3 %

Single Cell Weighting - Technique

Simple reconstruction without weighting

- One calibration factor (MIP to GeV) per subdetector (ECAL, AHCAL, TCMT)
- Noise rejection applied

Weight calorimeter cells according to their energy content ⇒ Apply higher weights to cells with low energy density

- Weights are energy dependent
- No knowledge of beam energy needed to apply weights

Results:

- Energy resolution improvement: → approx. 18 %
- Linearity of detector response better than 4 %

Conclusions

- Calibration of analog AHCAL with SiPM redout
- Energy Reconstruction of electromagnetic data
 - ⇒Test beam and simulated data in the AHCAL
- Energy Reconstruction of hadron data
 - \Rightarrow High granularity can be used for software compensation

Local and global software compensation methods

- Cluster energy density weighting technique:
 - \Rightarrow 15 % energy resolution improvement for AHCAL and TCMT
- Neural Network:
 - ⇒ 23 % energy resolution improvement for AHCAL and TCMT
- Tile energy density weighting technique:
 - ⇒ 18 % energy resolution improvement for the complete CALICE setup
- Optimum maybe in between both methods

Outlook

 Application of method on full ILD simulations and ILD reconstruction software PandoraPFA

Energy Resolution and Linearity for all energy in AHCAL and TCMT

- No clustering
- No software compensation
- MIP to GeV factor 0.028

Energy Resolution and Linearity for test beam data and QGSP_BERT Monte Carlo with Neural Network

Neural Network trained with FTF_BIC simulated data

Energy Resolution and Linearity for test beam data and QGSP_BERT Monte Carlo with Cluster Energy Density Weighting

Weights extracted from FTF_BIC simulated data

Energy Resolution Improvement for complete CALICE setup

- Single Tile Energy Weighting Technique
- Weights extracted from data
- No clustering

Monte Carlo Energy Correction

