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CALICE Calorimeter Prototype Program
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Extensive Test Beam Program

m DESY: 2006
CERN: 2006, 2007
FNAL: 2008, 2009

m Particle Types:
poet, T, p

m Particle Energies:
1 GeV to 80 GeV
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CALICE Calorimeter Prototype Program
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m ECAL: Silicon-Tungsten Calorimeter
30 Layers; 1x1cm? readout pads, 1.4, 2.8,
4.2 cm thick absorber plates;
30 Xo, 1 Mo

m HCAL: Scintillator-Steel Calorimeter
38 Layers; 1.8 cm thick absorber plates,
47 X0 4.5 Mo

m TCMT: Scintillator-Steel Calorimeter
8 layers: 2cm thick absorber plates, 8 layers:
10 cm thick absorber plates,
5x100 cm scintillator bars; 5.8 Ao
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CALICE Analog HCAL

m Iron absorber structure
m Active layers: scintillator tiles
m Tile sizes: 3x3cm?, 6x6cm?,
12x12cm?
m Light collection via wavelength
shifting fiber
m Readout via SiPM

Mirror
m High granularity in AHCAL center

WLS Fiber — in the shower core
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Calibration of the AHCAL

m Signal Saturation

m SiPM pixel number limited
— only limited number of 1000~
photons can be counted

m Low-intensity LED light coupled 500
into each detector cell -

m Gain measurement

m MIP-Calibration with Muons 5

e b b b L
v
: ; 1000 2000 8000 4000
m Complete detector illuminated light signal tarb. unts]

with high energy muons
m Equalization of cell response by
matching the MPV position

SiPM response [pix]

m Auto-calibration of SiPM gain:

m Temperature effect correction
m SiPM gain
m SiPM amplitude

= All effects included into event reconstruction and Monte Carlo digitization.
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Calibration of the AHCAL

m Signal Saturation

m SiPM pixel number limited
— only limited number of
photons can be counted
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m Temperature effect correction
m SiPM gain
m SiPM amplitude
= All effects included into event reconstruction and Monte Carlo digitization.
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Calibration of the AHCAL

m Signal Saturation

m SiPM pixel number limited
— only limited number of
photons can be counted

m Auto-calibration of SiPM gain:

m Low-intensity LED light coupled
into each detector cell
m Gain measurement
m MIP-Calibration with Muons

L o B B L B

Gaso - A
m Complete detector illuminated 0 ggg =
with high_energy muons 300 = J |
] Equall.zat|on of cell response by 250 ;/ \[ | CALIGE preliminary
matching the MPV position 200 g{ ‘ |
150 2 | |/ \
m Temperature effect correction 100 ;—J \ Y
50 =, e
m SiPM gain PO PR N s N
SiPM litud 0 200 400 600 800 1000 1200 1400 1600
| Si amplitude A [ADC]

= All effects included into event reconstruction and Monte Carlo digitization.
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Electromagnetic Showers in the AHCAL
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K. Seidel (MPI for Physics)

Positron test beam data from 10 GeV to 50 GeV

Comparison to Monte Carlo data

m Data taking without ECAL in front of
HCAL

m Linearity of detector response of 1.5% up
to 30 GeV

m Non-Linearity at higher energies not yet
reproduced in MC — Saturation handling

m Energy Resolution Data
Fit in the range from 10 GeV to 30 GeV

with: E[é’ev] = \/E[‘;EV] Db

a = 22.5 + 0.1(stat) & 0.4(syst) %
b = 0.0 + 0.1(stat) & 0.1(syst) %
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Hadronic Showers

Detector Response
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Software Compensation
= ldentification of electromagnetic and
hadronic shower component fractions
= Improve energy resolution
= Improve linearity of detector response

Total HCAL Energy in Cells > 4.5 MIP/cell [MIP]
8 3
3 3
L T e e B B

& L
0 200 400 600 800 1000 1200
Total HCAL Energy [MIP]

Method:
m Electromagnetic showers tend to be denser than purely hadronic ones
m Correlations between reconstructed energy and energy in high density shower regions

= Test Local and Global Techniques
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Cluster-Based Software Compensation

Two global methods based on cluster as a whole - no subcluster analysis
Look at global cluster properties

Shower reconstruction in AHCAL and TCMT

Showers are required to start in the AHCAL FCAL - HCAL e

Determination of shower variables
from test beam and simulated data

|
|

Muon Trigger

Analyses developed on Monte Carlo data
FTF_BIC

m Energy density weighting technique
m Neural Network from TMVA

Application of weight or trained neural network
on test beam data
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Density Weighting Technique

Hadronic Showers with high energy density p
= Higher electromagnetic content
= Higher reconstructed energy

Erec|GeV] =

K. Seidel (MPI for Physics)

Erec[MIP]-w(p, E)

energy reconstruction
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Cluster Energy Density Weighting Technique

Hadronic Showers with high energy density p

= Higher electromagnetic content
= Higher reconstructed energy

Erec|GeV] = Ere[MIP]) w(p, E)

® Individual weights with minimization of

function
X2 = FErec - w — Ebeam

K. Seidel (MPI for Physics)

energy reconstruction
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Cluster Energy Density Weighting Technique

. . . . g O 3
Hadronic Showers with high energy density p £ ‘ g E
= Higher electromagnetic content r ]
= Higher reconstructed energy 1

Erec|GeV] = Ere[MIP]) w(p, E)

5
T
Ll

® Individual weights with minimization of
function

2
X = Erec W — Ebeam X 3 3 0.2 0.25 0.3 0.35 0.

Cluster Energy Density [MIP/volume]
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m Parameterization of the individual weights
viaw=a(E) - p+ b(E)

ind. weights of a
40GeV pion run
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Hadronic Showers with high energy density p
= Higher electromagnetic content
= Higher reconstructed energy

Erec|GeV] = Ere[MIP]) w(p, E)

® Individual weights with minimization of

function
X2 = FErec - w — Ebeam

m Parameterization of the individual weights

viaw=a(E) - p+b(E)

m Parameterization of energy dependence with
function for a(EF) und b(E), E = Erec

fit parameter a

fit parameter b

00315

0031}

00305

003

= Determination of weights independent of beam energy!

K. Seidel (MPI for Physics)
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Cluster Energy Density Weighting - Results

Energy Resolution:

T e e B e A e D B L R R R R
w C ] z C 3
< L ] L = =
N Energy resolution - FTF_BIC weights ] T F E

02— test beam data: - © 095 -

r » constant cluster weight ] E 3

F ] 09 I
oas— o energy dependent parametrization J E t ¢ } ; 3

r q 0.85— i t 3 3

C ] E $ E

L B 08 =

01— 4 E E|

L ] 0751~ -

L 2 osF  Ratio of energy resolutions - FTF_BIC weights E

005~ Fii: aNED b I ¢ GeVIE . E testbeam data B

I —a=64.8£0.2% b =0.00+0.80% c = 0.000+0.208 [GeV] N 0.65— |

[ —a=535:09% b=2214037% c = 0.486:0.118 [GeV] ] 51 o energy dependent parametrization / constant cluster weight E

P P A B I B W I T B Y PSP AR WU EEPU A A R R B

0 30 40 50 60 70 80 90 % 10 20 30 40 50 60 70 80 9

beam Energy [GeV] beam Energy [GeV]

m Weight parametrization from Monte Carlo derived
m Weights applied on test beam data

m Energy resolution improvement: — approx. 15 %
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Cluster Energy Density Weighting - Results

Linearity of detector response:
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50— -
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Neural Network of TMVA

TMVA - Toolkit for Multivariate Data Analysis
TMVA

m Training with Monte Carlo events with continuous energy
of hadronic model FTF_BIC

m 6 input variables

m Reconstructed energy
m Cluster volume

m Cluster length

m Mean cluster width

m Cluster energy in last 5 AHCAL layers
m Cluster energy in Tail Catcher

m Target variable: beam energy

m Output value: reconstructed energy

= Trained Neural Network applied on test beam data

K. Seidel (MPI for Physics) energy reconstruction 27 March 2010 11 /15



Neural Network Technique - Results

TMVA

Energy Resolution:
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m Energy resolution improvement: — approx. 23 %
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Neural Network Technique - Results

TMVA

Linearity:
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Single Cell Weighting - Technique

Simple reconstruction without weighting

m One calibration factor (MIP to GeV)
per subdetector (ECAL, AHCAL,
TCMT)

m Noise rejection applied

Weight calorimeter cells according to their
energy content = Apply higher weights to
cells with low energy density

m Weights are energy dependent

m No knowledge of beam energy needed
to apply weights

Results:

m Energy resolution improvement:
— approx. 18%

m Linearity of detector response better
than 4%
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Conclusions

m Calibration of analog AHCAL with SiPM redout

m Energy Reconstruction of electromagnetic data
=>Test beam and simulated data in the AHCAL
m Energy Reconstruction of hadron data
=-High granularity can be used for software compensation
Local and global software compensation methods
m Cluster energy density weighting technique:
= 15% energy resolution improvement for AHCAL and TCMT
m Neural Network:
= 23 % energy resolution improvement for AHCAL and TCMT
m Tile energy density weighting technique:
= 18 % energy resolution improvement for the complete CALICE setup
m Optimum maybe in between both methods

Outlook

m Application of method on full ILD simulations
and ILD reconstruction software PandoraPFA

K. Seidel (MPI for Physics) energy reconstruction 27 March 2010 15 /15
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Energy Resolution and Linearity for all energy in AHCAL

and TCMT
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Energy Resolution and Linearity for test beam data and

QGSP_BERT Monte Carlo with Neural Network

m Neural Network trained with FTF_BIC simulated data
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Energy Resolution and Linearity for test beam data and

QGSP_BERT Monte Carlo with Cluster Energy Density
Weighting
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Energy Resolution Improvement for complete CALICE

setup

m Single Tile Energy Weighting Technique
m Weights extracted from data
= No clustering
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nte Carlo Energy Correction
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