
ILD Tracking Software for the DBD

 Steve Aplin

 LCWS10 Beijing
 29th March 2010

Overview

2

•  Present Status

•  Requirements for the DBD

•  Current Activities

•  Plans for Moving Ahead

•  Technical Requirements

ILD Tracking Software

3

•  Full Pattern Recognition
–  both Local and Global
–  kinks, V0’s, background rejection

•  Kalman Filter used for Fitting
•  Well Validated for the LoI Studies

ILD Tracking Software

4

PHYSICS PERFORMANCE

assumed for ILD, 150 BXs of beam-related background correspond to a voxel occupancy of

approximately 0.05 % (the TPC voxel size is taken to be 1 mm in the φ direction, 6mm in r
and 5 mm in z).

Figure 1.2-5 shows the TPC hits for a single tt event at
√

s = 500GeV overlayed with

150 BXs of pair-background hits. On average there are 265,000 background hits in the TPC,

compared to the average number of signal hits of 23100 (8630 from charged particles with

pT >1 GeV). Even with this level of background, the tracks from the tt event are clearly

visible in the rφ view. A significant fraction of the background hits in the TPC arise from

low energy electrons/positrons from photon conversions. These low energy particles form

small radius helices parallel to the z axis, clearly visible as lines in the rz view. These

“micro-curlers” deposit charge on a small number of TPC pads over a large number of BXs.

Specific pattern recognition software has been written to identify and remove these hits prior

to track reconstruction. (Whilst not explicitly studied, similar cuts are expected to remove

a significant fraction of hits from beam halo muons.) Figure 1.2-6 shows the TPC hits after

removing hits from micro-curlers. Whilst not perfect, the cuts remove approximately 99 %

of the background hits and only 3% of hits from the primary interation and the majority of

these are from low pT tracks. Less than 1 % of hits from tracks with pT >1 GeV originating

from the tt event are removed.

This level of background hits proves no problem for the track-finding pattern recognition

software, as can be seen from Figure 1.2-7. Even when the background level is increased by a

factor of three over the nominal background no degradation of TPC track finding efficiency

is observed for the 100 events simulated. This study demonstrates the robustness of TPC

tracking in the ILC background environment.

These conclusions are supported by an earlier study based on a detector concept with

B = 3.0 T, a TPC radius of 1.9 m and TPC readout cells of 3 × 10 mm2. This earlier

study used a uniform distribution of background hits in the TPC volume, but included a

very detailed simulation of the digitised detector response and full pattern recognition is

performed in both time and space. The TPC reconstruction efficiency as a function of the

noise occupancy is presented in Section ??; there is essentially no loss of efficiency for 1 %

FIGURE 1.2-5. The rz and rφ views of the TPC hits from a 500GeV tt event (blue) with 150 BXs of
beam background (red) overlayed.

6 ILD - Letter of Intent

Momentum [GeV/c]
1 10 210

]
-1

 [
(G

e
V

/c
)

1
/p

t
!

-510

-410

-3
10

-210

-110

theta = 7

theta = 20

theta = 30

theta = 85

 σ1/pt = 2 × 10－5 ⊕ 1 × 10－3 /(pt sin θ)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 (p>1GeV and NHits>3)!Si Tracking Efficiency vs Cos

0 0.2 0.4 0.6 0.8 1

0.98

0.985

0.99

0.995

1

 (p>1GeV and NHits>30)!TPC Tracking Efficiency (Good Tracks) vs Cos

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 (p>1GeV and NHits>3)!Combined Tracking Efficiency vs Cos

ILD Tracking Software

5

Momentum [GeV/c]
1 10 210

]
-1

 [
(G

e
V

/c
)

1
/p

t
!

-510

-410

-3
10

-210

-110

theta = 7

theta = 20

theta = 30

theta = 85

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 (p>1GeV and NHits>3)!Si Tracking Efficiency vs Cos

0 0.2 0.4 0.6 0.8 1

0.98

0.985

0.99

0.995

1

 (p>1GeV and NHits>30)!TPC Tracking Efficiency (Good Tracks) vs Cos

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 (p>1GeV and NHits>3)!Combined Tracking Efficiency vs Cos

 σ1/pt = 2 × 10－5 ⊕ 1 × 10－3 /(pt sin θ)

Outstanding Issues

6

•  The description and treatment of strip detectors
•  Pattern recognition in the silicon trackers, esp. FTD
•  TPC Pattern recognition is based on single BX’s

•  Code is generally messy and hard to maintain
•  The Fortran code makes modification difficult, as well as presenting

memory issues, esp. w.r.t. background studies

Current use of Fortran and C++

7

•  All Track fitting done is done in Fortran

•  TPC Pattern recognition is done in Fortran

•  VXD+SIT+FTD Pattern recognition is done in C++

•  Final Track Building + Extra Hits + SET + ETD – C++

•  Final Track fitting is done in Fortran

Current use of Fortran and C++

8

TPCTracks

TPCHits

SiTracks

VXDHits

SITHits

FTDHits

SiTracks

VXDHits

SITHits

FTDHits

TPCTracks

LDCTracks

SETHits

ETDHits

LEPTracking

SiliconTracking

FullLDCTracking

TPCPatrec

Kalman Filter LC
IO

 C
ol

le
ct

io
ns

Fortran LEP Code
Marlin Processors

Currently Discussed for the DBD

9

•  More Realism

–  Material

–  Digitisation

–  Non Uniform Magnetic Field

–  Background

–  Alignment

Requirements for a replacement

10

•  Tracking Software needs to be used for mass production, this means
being able to reconstruct millions of challenging events, whilst
maintaining an efficiency of better than 99%, including up 1TeV

•  Use more realistic measurements, i.e. move away from 3D space
points and towards measurements on surfaces, e.g. pixels, strips.

•  Patrec: able to survive the high background levels

•  Fitting: able to cope with a non-uniform magnetic field

Fwd Patrec

DAF Fitter?

Requirements for a replacement

11

Pattern
recognition

Track
Parameter

Determination

Geometery

TPC Patrec

VTX + SIT
Patrec

Fast Fitter

GSF Fitter?

(C) Kalman
Fitter

B-Field

Global
Patrec

B = {0,0,3.5}	

Hits

Use of Atlas Tracking Code

12

•  Atlas Tracking Code contains a well defined Tracking and Geometry
EDM, which are used by a set of Track Fitting Interfaces, with
implementations of a Kalman Filter, CKF, DAF, together with a
geometry navigator.

•  We spoke to Atlas Tracking Authors at CHEP 09 where they initially
expressed an interest in seeing their code reused.

•  To evaluate the code the idea was to try to build a prototype of the
Atlas tracking code for a TPC, outside of the Gaudi and Athena
frameworks, ideally in Marlin

Use of Atlas Tracking Code

13

•  This was initially with the aim of not significantly modifying the
codebase, e.g. use simplified header files, typedefs and #define
statement wherever possible.

•  The Code is well structured, well written and also very well
documented.

•  Unfortunately for us the dependence on Gaudi and Athena appears to
be quite involved.

•  Decided to change strategy and try to evaluate the code in situ, using
the Atlas fast simulation tool FATRAS.

FATRAS

14

FATRAS

15

FATRAS

16

Use of Atlas Tracking Code

17

•  Our conclusion on porting the Atlas Tracking code for use in Marlin is
that, without significant input from the authors, it is not feasible to use it
for the DBD studies.

•  The flexibility offered by FATRAS may provide us with a useful tool for
evaluating the impact of more advanced features, e.g. GSF, DAF.

–  Presently in contact with the lead author of FATRAS to see what modifications are
necessary to enable us to use it efficiently

Fwd Patrec

DAF Fitter?

Towards a Replacement

18

Pattern
recognition

Track
Parameter

Determination

Geometery

TPC Patrec

VTX + SIT
Patrec

Fast Fitter

GSF Fitter?

(C) Kalman
Fitter

B-Field

Global
Patrec

B = {0,0,3.5}	

Hits

Towards a Replacement Fitter

19

•  KalTest
–  ROOT based Kalman filter C++ library
–  Being brought into MarlinTPC by the LCTPC Group
–  Currently implementing a Combinatorial Kalman Filter

•  Genfit
–  Generic track fitting package written for the Panda Experiment
–  ROOT based C++
–  Currently being introduced into Marlin for Belle II by A. Moll

•  Broken Lines Fitting Algorithm
–  written by V. Blobel at DESY
–  C. Kleinwort is currently working on bringing this to C++ for CMS,

and hopes to then be able to use it for LCTPC

Technical Improvements Needed

20

•  Provide a convenient method of calling a fitter.

•  Update LCIO Track class or provide additional Trajectory class.

•  Improve LCIO description of hits to include more than just
3D space-points.

•  Improve GEAR description of Silicon Trackers.
(Ongoing for SiLC by A.Charpy)

•  Improve the way that the material description required for
tracking is handled in Marlin.

Summary

21

•  ILD tracking software remains available and well suited to
performing physics and optimisation studies.

•  The search for a replacement fitter proceeding well.
•  Material description and hit treatment improving.

•  Pattern Recognition will require the greatest effort, especially in
the presence of background.

•  Within the AIDA EU Grant proposal, Tracking has been
specified as a major part of the Software Work-package.

