

Pixel readout for a TPC

LCWS 2010 – Tracking TPC R&D session 27 March 2010

Jan Timmermans

On behalf of the Bonn/CERN/Freiburg/Nikhef/Saclay groups

Full post-processing of a TimePix

• Timepix chip + SiProt + Ingrid:

Pad readout vs. Pixel readout

- Pad size ~1x5 mm² or ~3x7 mm²
- Timepix pixel size 55x55 $(\mu m)^2$
- Pad TPC ~ 10⁶ pads; several 10⁹ 3Dvoxels
- CMOS pixel readout ~ 2.10⁹ 'pads' (but 'only' ~ 4.10⁴ chips); ~ 10¹² 3D voxels
- # pads/pixels might be problem for software, but occupancy rather low

Cosmic tracks traversing ~ 30 mm drift space Ingrid and Ar-CF4-iC4H10 (95/3/2%)

"large" diffusion

"little" diffusion

Triple-GEM module with readout by 8 Timepix chips: 16 cm2 active area, 0.5M channels

Bonn/Freiburg

8

Some Pictures (III)

Long-term' plans (end 2010)

LP1 module covered completely with Timepix modules First ideas: 119 Timepix chips (more than 1 wafer, ≈7.8·10⁶ channels)

Gas amplification: triple GEM, possibly also InGrids <u>Readout electronics:</u> 'Scalable Readout System' developed at CERN in the framework of RD-51 univ

NIKHEF: emphasis on Ingrids

- QUAD chips board tested OK in 2008
- Equiped with Ingrids in June '09
- Works with source and cosmics at NIKHEF in Nov'09 Feb'10

- within Relaxd project: 4x4 Medipix chips in compact mounting
- Will evolve in 8x8 Timepix chips for EUDET

 Readout does NOT work at DESY (testbeam) in Dec'09 and Mar'10, except for 3 days in March'10

Few tracks from ~3-day test at DESY with quad-Ingrid detector

Track very close to border; there is 0.5mm 'dyke'

Two tracks about 0.5 mm apart in x

Track backscattering from chip (=anode)

Two tracks; last day lower-left Ingrid lost HV connection

Track distorted by HV disconnected from lower-left Ingrid

NIKHEF

within Relaxd project:
4x4 Medipix chips in compact mounting

• Will evolve in 8x8 Timepix chips for EUDET/LCTPC

Pixel readout activities at Saclay

- Production of LP module with 8 Timepix+Ingrid chips (Saclay+Nikhef)
- Module (mother) board + 'mezzanine' board carrying chips produced by Saclay
- Timepix+Ingrid chips produced by Nikhef/Univ. Twente
- Readout working for 8 'naked' Timepix chips
- Mounting of 8 Timepix+Ingrid chips soon

2×4 TimePix/InGrid matrix module for the LPTPC

- 8 naked TimePix chips have been bonded on the octopuce card by Joop in Nikhef last month.
- For the first time, 8 chips have been recognized by Pixelman
- The mezzanine card works electrically using power regulators
- During operation, the total power consumption is 20 watts
- Pixelman display issue found and has to be fixed

- The chip bypass has been tested
- The equalization was done and the test pulsers do the job
- Next month, 8 Ingrids could be mounted and tested in gas
- Next beam test in the Large Prototype of TPC in DESY before summer.
- To be continued...

Conclusions

- EUDET-SITPC final infrastructure available for 3-GEM + 8 Timepix chips – analysis beam data in progress
- LP module with 8 Timepix+Ingrid chips in preparation. Readout working with 8 'naked' chips. Module mounting with Ingrids soon.
- Quad-Ingrid detector for standalone tests having readout problems at DESY (works at NIKHEF)
- Longer term: working on larger systems of 64 and 119 chips for Ingrids and GEMs.

Backup

Performance goals and design parameters for a TPC with standard electronics at the ILC detector

Size

 $\phi = 3.6 \text{m}, L = 4.3 \text{m}$ outside dimensions $\delta(1/p_t) \sim 9 \times 10^{-5}/\text{GeV/c}$ TPC only (× 0.4 if IP incl.) Momentum resolution (3.5T) $\delta(1/p_t) \sim 2 \times 10^{-5}/\text{GeV/c}$ (SET+TPC+SIT+VTX) Momentum resolution (3.5T) Solid angle coverage Up to $\cos\theta \simeq 0.98$ (10 pad rows) TPC material budget $\sim 0.04 X_0$ to outer field cage in r $\sim 0.15 X_0$ for readout endcaps in z Number of pads/timebuckets $\sim 1 \times 10^6 / 1000$ per endcap Pad size/no.padrows $\sim 1 \text{mm} \times 4$ -6mm/ ~ 200 (standard readout) $< 100 \mu m$ (average over L_{sensitive}, modulo track ϕ angle) σ_{point} in $r\phi$ ~ 0.5 mm (modulo track θ angle) σ_{point} in rz $\sim 2 \text{ mm}$ (modulo track angles) 2-hit resolution in $r\phi$ with MPGD 2-hit resolution in rz $\sim 6 \text{ mm} \text{ (modulo track angles)}$ $\sim 5\%$ dE/dx resolution > 97% efficiency for TPC only (p_t > 1GeV/c), and Performance > 99% all tracking (pt > 1GeV/c) [82] Background robustness Full efficiency with 1% occupancy. simulated for example in Fig. 4.3-4(right) Background safety factor Chamber will be prepared for $10 \times$ worse backgrounds at the linear collider start-up

Cluster counting distribution in He/iC4H10

Single hits counting distribution in He/iC4H10

