The Study on the right-handed neutrino in extra dimension

(arXiv:0707.4058v3[hep-ph], arXiv:0901.4596v1[hep-ph])

Tomoyuki Saito (Tohoku Univ.)

2010/03/27 LCWS 2010 @ Beijing

Outline

- Physics model
- Simulation
- \blacktriangleright Analysis at $\varsigma s = 500 \text{ GeV}$, 1TeV
 - Event reconstruction
 - Error of cross section
- Summary

Seesaw mechanism

Why is $v \not \infty$ mass small?

Seesaw mechanism

Answer.

Because of heavy N

$$M_{\nu} = \frac{v^2 y^2}{2M_N} \simeq 0.1 eV$$

y: Yukawa coupling

 $v\,$: vaccum expectation

value

Too heavy

• y=1
$$\to M_N = 10^{14} \text{ GeV}$$

•
$$M_N = 10^2 \text{ GeV} \rightarrow y = 10^{-6}$$

Too weak

N can not be observed.

Right-handed neutrino in extra-dimension

Assume the extra dimension õ

$$M_N = \frac{2n-1}{2R}(n=1,2,\cdots)$$

n : Index of KK mode, R : Radius of ED

If the size of the extra dimension is TeV scale, $1/R \sim 100 \text{GeV} \Rightarrow M_N \sim 100 \text{GeV}$

⇒ Origin of small neutrino mass and extra-dimension

N interaction

How does N interact?

N interaction

- ► N interacts with SM particles through Higgs coupling with weak-interaction
- ► M_N can be reconstructed by using decay products from N for CC interaction.
 - ⇒ The flavor mixing is occurred with MNS matrix.

CC interaction

NC interaction

Simulation

Simulation condition

Fast simulator of GLD

C.M. energy : 500 GeV, 1 TeV

Integrated luminosity : 500 fb-1

Neutrino mass hierarchy: Normal, Inverted, Degenerate

Right-handed neutrino

· Majorana neutrino

• Mass N_1 : **150** GeV

 N_2 : **450** GeV

 N_3 : **750** GeV

Constrained by LEP

Signal

Cross section of signal

Ecm=500 GeV			Ecm=1TeV			
KK mode	Normal	Inverted	Degenerate	Normal	Inverted	Degenerate
1st KK	6.524	297.5	257.1	7.791	355.4	307.1
2nd KK	0.065	2.975	2.571	0.517	23.60	20.40
3rd KK	/	/	/	0.085	3.864	3.340

The analysis results are shown based on the case of the degenerate hierarchy.

Background

Background: The visible final state of 2jets+1lepton

The cross section of background (fb)

Background	Ecm=500GeV	Ecm=1TeV
evW	4462	10320
WW -> lvqq	660	280.3
$ZZ \rightarrow llqq + vvqq$	163	32.79
tt	531	29.43

The major backgrounds are evW and WW

Event reconstruction

N mass is reconstructed by information of the decay products

- 1, Identification of an isolated lepton track
- 1 Energy sum of the track around 20 deg. < 5 GeV
- The most energetic track of ①
 ⇒ Lepton candidate

Non-isolated Isolated lepton | |

- 2, Forced 2jet reconstruction except for the lepton
 - \Rightarrow W is reconstructed
- 3, Reconstruction of N mass

$$P_N = P_W + P_l$$

Analysis at 500 GeV 1st KK N 2nd KK N

Reconstructed N mass

N mass is reconstructed by using information of reconstructed particles

Cut summary at 500GeV

The selection cut is applied to the 1st KK mode

	1stKK	evW	WW	ZZ	tt
before cut	153540	5160000	140150	16395	14715
10 < Lepton Energy < 300	53291	254672	60704	1612	6177
60 < 2jet mass < 100	35428	126965	40436	78	317
140 < N mass < 160	30331	9386	778	4	112
efficiency (%)	19.8%	0.2%	0.6%	0.0%	0.8%

Background is rejected effectively.

Measurement accuracy

The measurement accuracy is evaluated by the fitting N mass distribution.

Fitting function

Double gaussian+ 2nd order polynominal

Measurement accuracy 0.4%

Reconstructed N mass after cut

The cross section of the 1st KK mode can be measured with good sensitivity.

Analysis at 1TeV (1st KK) 2nd KK (3rd KK

Reconstructed N mass

N mass is reconstructed by using information of reconstructed particles.

Background is needed to reject

Cut condition at 1TeV

Background is rejected by

Lepton energy cut

2jet mass cut

2 jet energy cut

Signal region cut

Reduction table

	1st KK		2nd KK		3rd KK	
	Signal	BG	Signal	BG	Signal	BG
Before cut	153540	5331260	10200	5331260	1670	5331260
After cut	30331	9386	5567	17478	829	6440
Efficiency (%)	19.8	0.18	36.7	0.33	49.6	0.12

Background is rejected effectively.

Measurement accuracy

The mass peak for the 1st, 2nd and 3rd KK mode can be observed clearly.

The error of the cross section

0.67%

2.69%

8.38%

Summary

Measurement accuracy of the right-handed neutrino in ED model is investigated.

The error of the cross section (%)

Ecm	KK mode	Normal	Inverted	Degenerated
500 GeV	1st KK	7.0	0.36	0.40
	1st KK	13.0	0.53	0.67
1TeV	2nd KK	-	2.4	2.7
	3rd KK	-	7.0	8.4

KK tower can be observed at $1\text{TeV} \rightarrow \text{Clear evidence of ED!}$

Plan Analysis of N τ W mode to investigate branching ratio

Back up

Lagrangian

$$\mathcal{L}_{\text{int}} = -\frac{g}{\sqrt{2}} \bar{e} W U_{\text{MNS}} P_L \nu + h.c.$$

$$-\frac{g}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{1}{\pi R m_n} \bar{e} W X P_L N^{(n)} + h.c.$$

$$-\frac{g_Z}{2} \sum_{n=1}^{\infty} \frac{1}{\pi R m_n} \bar{\nu} Z \left(\frac{2m_{\nu}}{\mathcal{M}}\right)^{1/2} \mathcal{O} P_L N^{(n)} + h.c.$$

$$-\frac{g_Z}{2} \sum_{n,m=1}^{\infty} \frac{1}{\pi^2 R^2 m_n m_m} \bar{N}^{(n)} Z \left(\frac{2m_{\nu}}{\mathcal{M}}\right) P_L N^{(m)}$$

$$-\sum_{n=1}^{\infty} \frac{1}{\pi R \nu} h \bar{\nu} \left(\frac{2m_{\nu}}{\mathcal{M}}\right)^{1/2} \mathcal{O} P_R N^{(n)} + h.c.$$

$$-\sum_{n=1}^{\infty} \frac{1}{\pi^2 R^2 \nu m_m} h \bar{N}^{(n)} \left(\frac{2m_{\nu}}{\mathcal{M}}\right) P_L N^{(m)} + h.c.$$

Background

Background: The visible final state of 2jets+1lepton

The cross section of background (fb)

Background	Ecm=500GeV	Ecm=1TeV
evW	4462	10320
$WW \rightarrow l_V qq$	660	280.3
$ZZ \rightarrow llqq + vvqq$	163	32.79
tt	531	29.43

The major backgrounds are evW and WW

Neutrino mass hierarcy

	Normal	Inveted	Degenerate
ve (eV)	0	0.041	0.20
νμ (eV)	0.009	0.05	0.21
ντ (eV)	0.059	0	0.26