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First motivated by Kaluza (1921) and Klein (1926).

Today, motivation comes from string theory, which need a
number of compactified EDs .

Different models: Number of EDs, compactification
manifold, number and positions of branes and which
particles can go into the bulk .

In Universal Extra Dimension (UED) type models,all
standard model particles are placed in the bulk , no need
for branes. (Appelquist, Cheng and Dobrescu, PRD 64, 035002, 2001)

Best candidate to mimic SUSY, and an alternative to
SUSY to give cold dark matter
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Minimal UED : A five-dimensional model (xµ, y)

The fifth dimension, y is compactified (S1/Z2)
(Orbifolding is Necessary to get chiral fermions of the SM)

In 4d for each low mass(zero mode) SM particle we get
an associated KK tower:degenerate (∽n/R)

Conservation of KK number: conservation of p5

Radiative corrections: Degeneracy is removed partially

Boundary corrections break KK number conservation
down to KK Parity (−1)n conservation
(Cheng Matchev, Schmaltz PRD 2002)

n = 1 particles must be pair produced(Conservation of
KK Parity) and decay to γ1 (LKP:DM Candidate)
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Expectation from LHC
LHC: KK gluon and KK quarks can be produced
copiously

Collider signature of UED: Multijet + multilepton +
Missing energy (Cheng Matchev, Schmaltz PRD 2002)
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The signal can mimic SUSY at collider
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Expectation from LHC
LHC: KK gluon and KK quarks can be produced
copiously

Collider signature of UED: Multijet + multilepton +
Missing energy

The signal can mimic SUSY at collider

Difference : UED vs SUSY

Spins are different
(Spin measurement is difficult at the LHC)

n=2,3 .... excited states
(People have studied Z2,γ2 production at the LHC)

Higgs sector
(UED: one doublet + KK modes SUSY: two doublets + superpartners)
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n = 2 Gauge Bosons

n = 2 gauge bosons can couple to two SM fermions via
KK number violating coupling
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n = 2 Gauge Bosons

n = 2 gauge bosons can couple to two SM fermions via
KK number violating coupling

Need same energy to produce two n = 1 states or one
n = 2 state

The production goes through the coupling

f0f0V2 −→ (−igγµTaP+)

√
2

2

(

δ̄(m2
V2

)

m2
2

− 2
δ̄(mf2

)

m2

)

where m2 = 2/R, Ta is the group generator

(Cheng Matchev, Schmaltz PRD 2002)
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Couplings
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Z2/γ2 Physics
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Z2/γ2 Physics

Z2 can decay to leptonic KK-conserving channels
(kinematics) or KK-violating channels, but it is almost W3,
so couples only to doublets

γ2 can decay only through KK-number violating channels

KK conserving and violating decays are equally
important: either kinematic or phase-space suppression

Z2 and γ2 can be produced as s-channel resonances

At the LHC Z2 and γ2 can be seen as a dimuon/dielectron
resonances (Datta, Kong, Matchev PRD 2005, Matsumoto et al. PRD 2009 )

These two peaks may or may not be resolvable.
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Z2 and γ2 at ILC
Again Z2 and γ2 can be produced as s-channel
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Z2 and γ2 at ILC
Again Z2 and γ2 can be produced as s-channel
resonances

Positions of these two peaks should give Λ and R and
should completely determine the fermionic UED spectrum

Problem
ILC is a fixed CM machine
Resonances may several decay width away from

√
s

=⇒ no signal of any significance.

Radiative return will save us.
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Bump hunting at the ILC
Bhattacherjee,Rai,Raychaudhuri,Kundu PRD (2008)
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Observation of a high-mass resonance, or a pair of such
resonances = UED ?
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Observation of a high-mass resonance, or a pair of such
resonances = UED ?

No
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Other models
Possible source of a single bump in the dijet invariant mass spectrum :

A resonant Z′ boson, predicted in models with extra U(1) symmetries.

A heavy sneutrino eνµ or eντ in a SUSY model with R-parity-violating couplings.

A massive graviton G1, predicted in the Randall-Sundrum model.

We should correlate other signals of UED like 4ℓ+ 6ET with dijet excess

Possible source of 4ℓ+ 6ET signal, standing alone.

A pair of heavy Z′ bosons, with an ordinary Z boson radiated from any of the fermion
legs

a pair of heavy W ′± bosons, with an ordinary Z boson radiated from any of the
fermion legs

A pair of heavy neutralinos eχ0
i eχ0

j (i, j > 1), each of which decays as

eχ0
i → ℓeℓ → ℓ(ℓeχ0

1
) (irreducible)
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Correlation plot
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ILC Summary
LHC may provide hints of UED but ILC will settle the
issue.

There is no ‘smoking gun’ signal of UED.

One can look for peaks in the invariant mass distribution
and four lepton excess to identify an underlying UED.

ILC environment is cleaner than LHC

Correlation plot can be used to pin down parameters R−1

and ΛR; may also hint at nonminimal UED.

By measuring angular distributions, threshold scan, one
can reconfirm UED (Battaglia et al. JHEP 2005).

ILC is needed to identify UED!
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Scalar sector of UED

The n-th level Higgs field is parametrized as

Hn =

(

χ+
n

hn−iχ0
n√

2

)

where χ+
n , hn and χ0

n are excitations of charged scalar ,CP
even neutral and CP odd neutral scalars.

There are three more scalars ,which are 5th components
of excitations of gauge bosons Z5

n ,W 5±
n .
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Scalar sector of UED(cont.)

The Goldstone combinations are given by

G0
n =

1

mZn

[

mZχ0
n − n

R
Z5

n

]

,

G±
n =

1

mWn

[

mW χ±
n − n

R
W 5±

n

]

.

The orthogonal combinations are the physical fields given
by H±

n , A0
n

if 1/R ≫ M(W,Z) ,the n 6= 0 Goldstones are the 5th component
of gauge bosons.
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Radiative correction on scalars

The tree level masses of the excited scalars are given by

m2
hn,A0

n,H±
n

= m2
n + m2

h,Z,W±

The radiative correction is given by

δm2
H = m2

n

[

3

2
g2 +

3

4
g′2 − λ

]

1

16π2
ln

Λ2

µ2
+ m2

h

where m2
h is the boundary mass term for the excited scalars,

(not a priori calculable)
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A few points to be noted :

Radiative correction to the excited scalar masses is
universal.

H± will be the lowest-lying one.

The hierarchy mhn
> mA0

n
> mH±

n
is fixed.

For larger SM Higgs mass H±
1 and A0

1 masses go down if
we keep m2

h fixed. h1 will become more massive.

The excited scalar sector becomes more massive as m2
h

goes up, this affects the decay kinematics.
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Charged scalar decay
Region 1: MH1

± > Ml1
±

H±

1
→ lD(e1,m1, l1) + SM Neutrino + (e,m, l) + N1

( gauge coupling dominates over Yukawa, universal branching)

Region 2: Ml1
± > MH1

± > Ml2
±

H±

1
→ Singlet lepton(l1) + SM Neutrino + h.c

( Yukawa coupling, only to tau lepton )

Region 3: Ml2
± > MH1

± > Mγ1

H±

1
→ γ1 + ff ( Through virtual W±

1
)

Region 4: MH1
± > MW1

±

H±

1
→ W±

1
+ ff ( Through virtual W±)
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Parameter space
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Cross section
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Illustrating the signal cross section and UED backgrounds for R−1 =350 GeV
Left: blue → W±

1
H±

1
+ h.c , red → H+

1
H−

1

Right: From top to bottom → e+

1
e−
1

,e+

2
e−
2

, W+

1
, W−

1
, m1m̄1, m2m̄2, Z1Z1

( Thomas G. Rizzo,PRD 2001).
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Summary
Minimal UED model contains three scalars:H±

n , h0
n, A0

n

Masses depend on Λ, R−1,mh and m2

h

These Higgses can decay only leptonically

Spectrum dictates that the leptons must be soft

This poses a serious challenge in their detection

The detector limitation may remove the majority of the
signal

One can study the the scalar sector with polarized
beam
We also stress that this talk is more of a qualitative
nature, and a detailed quantitative study should be
taken up.
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Thank You
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UED Spectrum

Radiative correction is not included. R−1 = 500 GeV. Taken

from Cheng, Matchev, Schmaltz, PRD 66, 036005, 2002
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UED Spectrum

Radiative correction is included. R−1 = 500 GeV,ΛR = 20.
Taken from Cheng, Matchev, Schmaltz, PRD 66, 036005, 2002
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Energy spectrum
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Bump hunting at the CLIC
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