

] | | .

Akira Yamamoto, Marc Ross, and Nick Walker ILC-GDE Project Managers

To be presented at ILC-10, Beijing, March 26, 2010

ic Global Plan for SCRF R&D

Year	07	2008	20	09	2(010	2011	2012
Phase		TDP-1			TDP-2			
Cavity Gradient in v. test to reach 35 MV/m		\rightarrow Yield 50% \rightarrow Yield 90%			90%			
Cavity-string to reach 31.5 MV/m, with one- cryomodule		Global effort for string assembly and test (DESY, FNAL, INFN, KEK)						
System Test with beam acceleration		FLASH (DESY) , NML (FNAL) STF2 (KEK, extend beyond 2012)						
Preparation for Industrialization	Production Technology R&D			ology				

What to be reviewed?

- Fundamental Research to improve 'Gradient'
 - R&D status and understanding of limit
 - Strategy for improvement
- Preparation for 'Industrialization'
 - Cost effective production and quality control
 - 90 % (9-cell cavity) corresponding to ~ 99 % (1-cell cavity)
 - Balance between R&D and ILC operation parameters with beam,
- System Design and Engineering
 - Integration (compatibility, alignment, accuracy)
 - Optimization with other components,
 - CFS, HLRF/LLRF, Beam handling, and others,
 - Best Operation Gradient to be determined

ILC Gradient Goals

500 GeV: Gradient and Q

Based on BCD cavity shape (TESLA cavity)

- BCD: Linac operating performance Eacc = 31,5 MV/m; Q = 1x10¹⁰
- BCD: Installed performance Eacc ≥ 35 MV/m; Q ≥ 0.8x10¹⁰
 - Required R&D
 - Reduction of field emission and multipacting
 - Reduction of scatter of cavity performance

H Edwards, D.Proch, K.Salto, ILC snowmass 05, Wg5

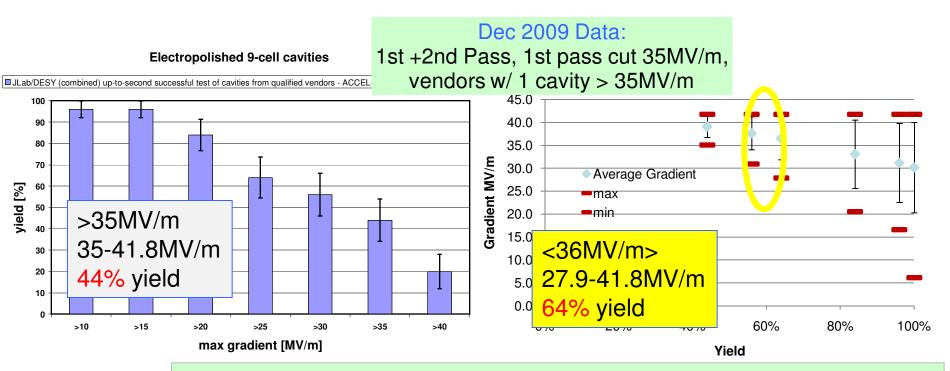
2005 Snowmass BCD proposal

4.1.2 Issues of Main Linac System Design

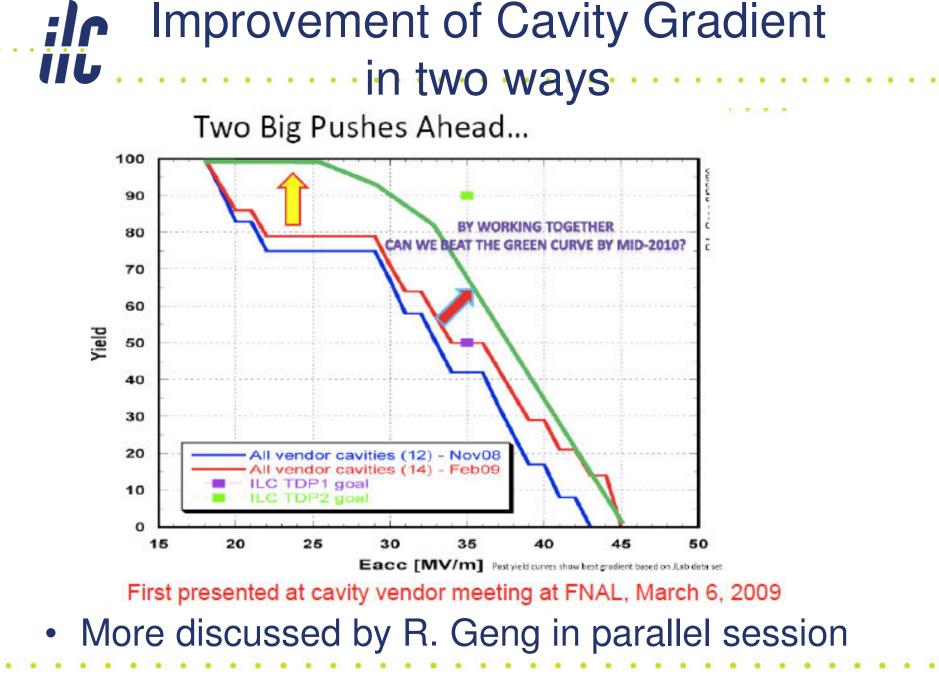
In conjunction with the (GDE and AAP) review process in 2010, based on the current R&D results we propose to keep the cavity gradient goals at 35MV/m in vertical test,S0, and 31.5MV/m in operation in an installed cryomodule, S1. We note that as the R&D progresses, including horizontal testing of

Parameter	Value		
Type of accelerating structure	Standing Wave		
Accelerating Mode	TM_{010} , π mode		
Fundamental Frequency	1.300 GHz		
Average installed gradient	31.5 MV/m		
Qualification gradient	35.0 MV/m		
Installed quality factor	\geq 1 $ imes$ 10 ¹⁰		
Quality factor during qualification	$\geq \! 0.8 \! imes \! 10^{10}$		
Active length	1.038 m		
Number of cells	9		
Cell to cell coupling	1.87%		
Iris diameter	70 mm		
R/Q	1036 Ω		
Geometry factor	$270 \ \Omega$		
Epeak/Euce	2.0		
B _{peak} /E _{acc}	$4.26 \text{ mT MV}^{-1}\text{m}^{-1}$		
Tuning range	$\pm 300 \text{ kHz}$		
$\Delta f / \Delta L$	315 kHz/mm		
Number of HOM couplers	2		

2007 RDR


SB2009

3/28/10 Rongli Geng


ILC10, Beijing, China

IC Alternative Yield Plot Analysis

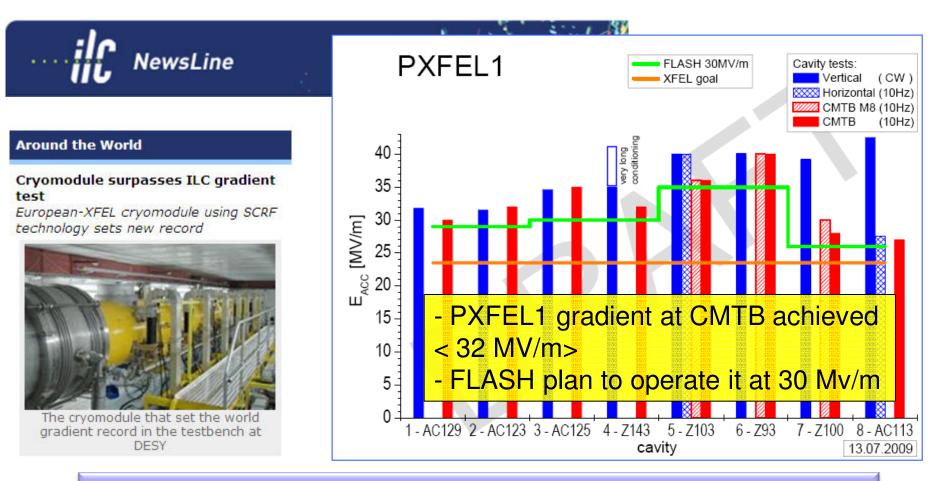
originated by N. Walker and updated by J. Kerby

-Yield: estimated assuming a specific lower cut-off in cavity performance, below which cavities are assumed 'rejected'. - Error bar: +/- one RMS value (standard deviation of the population) of the remaining (accepted) cavities (gradient above cut-off). - Additional bars (min, max) indicated the minimum and maximum gradients in the remaining cavities.

How we may improve Gradient?

- Yield drop at 15-20 MV/m is a major issue
 - Shared issue with XFEL and CEBAF upgrade cavities
- Solution requires actions in cavity fabrication
 - EBW QA/QC
 - Finished weld inspection
 - Early correction
- Feedback enables change and then progress expected
 - Experienced vendors
 - New vendors

	Standard Fabrication/Process	(Optional action)	Acceptance Test/Inspection
Fabrication	Nb-sheet purchasing		Chemical component analysis
	Component (Shape) Fabrication		Optical inspect. Eddy current
	Cavity assembly with EBW	thating	Optical inspection
Process	EP-1 (Bulk: ~150um)		
	Ultrasonic degreasing (detergent) or ethanol rinse		
	High-pressure pure-vialer (Optical inspection
	Hydrogen degassing at 600 C (?)	750 C	
	Field fatness tuning		
	EP-2 (-20um)		
	Ultrasonic degreasing or ethanol	(Flash/Fresh EP) (~5um))	
	High-pressure pure-water rinsing		
	General assembly		
	Baking at 120 C		
Cold Test (vertical test)	Performance Test with temperature and mode measurement	Temp. mapping	If cavity not meet specification Optical inspection


More discussed in parallel session

116.

SCRF Gradient in 'R&D' and 'Project'

- R&D Goals set in RDR
 - 9-cell cavity: to reach 35 MV/m at Q0 = 8E-9 at the vertical test, with the production yield at > 90 %
 - Cryomodule: to reach <31.5 MV/m> at Q0 = 1 E10,
- Project Goal/Parameter set in RDR
 - ILC operational gradient set at < 31.5 MV/m> including cavity operational margin to the <u>quench/field-emission limit</u> and also <u>accelerator control/operational margin</u> for HLRF/LLRF
- Seek for reasonable balance between 'R&D goals' and the 'Project Parameters' in TDP
 - Understanding the status with the global data base
 - Re-optimization of the parameters in system design

S1 Goal: Achieved at DESY/XFEL

First XFEL prototype module exceeds 31.5 MV/m average - Module will see beam in FLASH in 2010 (av. of 30MV/m)

- Cryostat (cryomodule cold-mass) contributed by IHEP, in cooperation with INFN

İİĻ

ic What we need to study in TDP-2

Balance between R&D target values and Operational parameters
 Will be reviewed after S1 experience
 System design should require reasonable margin for the individual component and the system operation

S1 (~ Component performance) > ILC-Acc. Operational Gradient

	RDR/SB2009	Re-optimization required with cautious, systematic design			
R&D goal: S0	35 (> 90%)	35 MV/m (> 90 %) <i>Keep it, and forward looking</i>			
S1 (w/o beam)	31.5 in av.	need: > 31.5 in av., to be further optimized	31.5 in av.		
S2 (w/ beam acc.)	31.5 in av.	> 31.5 in av.	31.5 in av.		
ILC: operational gradient	31.5 in av.	31.5 in av. (+/- 10 ~ 20 %)	or: < 31.5 in av,, to be further optimized		

What to be reviewed?

- As Summary
 - Fundamental Research to improve 'Gradient'
 - R&D status and understanding of limit
 - Strategy for improvement
 - Preparation for 'Industrialization'
 - Cost effective production and quality control
 - 90 % (9-cell cavity) corresponding to ~ 99 % (1-cell cavity)
 - Balance between R&D and ILC operation parameters with beam,
 - System Design and Engineering

2010.3.26

- Integration (compatibility, alignment, accuracy)
- Optimization with other components,
 - CFS, HLRF/LLRF, Beam handling, and others,
 - Best Operation Gradient to be determined
 SCRF Review by AAP

• TBD

Summary

- In SB2009, ILC operational field gradient left unchanged
 CF&S study enables to stay at 31 km in ML tunnel length
- SCRF cavity gradient R&D Goal
 - Being kept: 35 MV/m (at Q0 = 8E9) with the production yield of 90 %,
 - Spread of cavity gradient effective to be taken into account
 - to seek for the best cost effective cavity production and use,
- Re-optimization to establish ILC operational gradient
 - Necessary adequate balance/redundancy between the 'R&D gradientmilestone' and the 'ILC operational gradient' including sufficiently high 'availability' with risk mitigation.
 - Necessary engineering and cost balance b/w Cavity and HLRF/LLRF
- Further optimization for design parameters & construction.
 - Cryomodule/cryogenics, Quadrupoles, plug-compatibility, and industrialization

SCRF Technology Required

Parameter	Value
C.M. Energy	500 GeV
Peak luminosity	$2x10^{34}$ cm ⁻² s ⁻¹
Beam Rep. rate	5 Hz
Pulse time duration	1 ms
Average beam current	9 (or 4.8) mA (in pulse)
Av. field gradient	31.5 MV/m
#9-cell cavity	14,560
# cryomodule	1,680

C TDP Goals of ILC-SCRF R&D

Cavity Field Gradient (S0)

35 MV/m in vertical test

Cavity-string Assembly in Cryomodule (S1)

- <31.5 MV/m> in cavity string test in cryomodule
 - To be re-evaluated in preparation for SB-2009 proposal.
- Efficient R&D with "Plug-compatibility" for
 - improvement and 'creative work' in R&D (TDP) phase

Accelerator System with SCRF (S2)

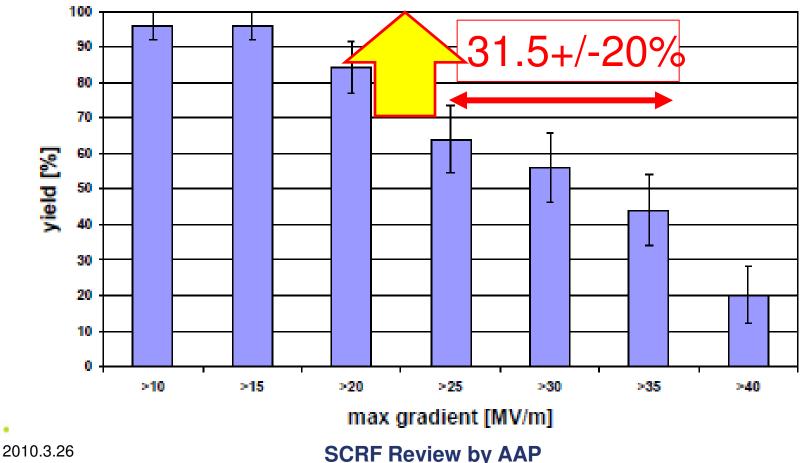
Beam Acceleration with SCRF Accelerator Unit

- Need to discuss an reliable, operational field gradient including adequate HLRF/LLRF control margin for stable operation
- Industrial Production R&D
 - Preparing for production, quality control, cost saving
 "Plug compatibility" for global sharing in production phase

Standard Process Selected in Cavity Production and the Yield

ΪĹ

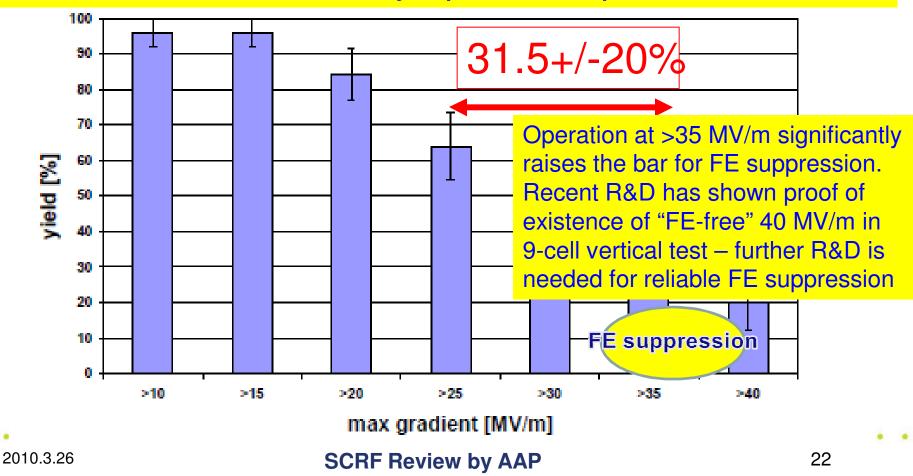
	Standard Cavity Recipe
Fabrication	Nb-sheet (Fine Grain)
	Component preparation
	Cavity assembly w/ EBW (w/ experienced venders)
Process	1st Electro-polishing (~150um)
	Ultrasonic degreasing with detergent, or ethanol rinse
	High-pressure pure-water rinsing
	Hydrogen degassing at > 600 C
	Field flatness tuning
	2nd Electro-polishing (~20um)
	Ultrasonic degreasing or ethanol
	High-pressure pure-water rinsing
	Antenna Assembly
	Baking at 120 C
Cold Test (vert. test)	Performance Test with temperature and mode measurement (1 st / 2 nd successful RF Test)


Improved Understanding in Quench Limit

- Routine 9-cell T-mapping and optical inspection
 - New insights from pre-cursor heating studies at JLab
 - First predictive defect study at DESY
 - Cornell 2nd sound sensors will be available for labs
 - Many labs use "Kyoto camera" (JLab just received a loan unit)
- New finding: many 9-cell is quench limited at 20-25 MV/m by only one defect in one cell with other superior cells already reaching 30-40 MV/m
 - There may or may not be observable flaw in quench site
 - This seems to suggest we need to address material aspect besides processing and fabrication in TDP-2
 - This also suggests some local repairing is needed for efficient raise of 2nd pass gradient yield

A Major Next Battle: Eliminate Yield Drop near 20 MV/m

Despite increased acceptance thanks to more flexible


JLa /DESY (combined) up-to-second successful test of cavities from qualified vendors - ACCEL+ZANON+AES (25 cavities)

21


Another Next Battle: Further Reduce Field Emission up to 40 MV/m

Flexible HLRF opens up possibility of some individual cavity operates up to 38 MV/m

Progress and Prospect of Cavity Gradient Yield Statistics

	PAC-09 Last/Best 2009-05	FALC 1 st Pass 2009-07	ALCPG 2nd Pass 2009-10	To be added (2009-11)	Coming Prod. Y. (2010-06)	Research cavities
DESY	9 (AC) 16 (ZA)	8 (AC) 7 (ZA)	14 (AC/ZA)	4 (Prod- 4)	5	8 (large G.)
JLAB FNAL/A NL/Corn ell	8 (AC) 4 (AE) 1 (KE-LL5) 1 (JL-2)	7 (AC)	7 (AC)	5 (AE)	12 (AC) 6 (AE) 2 (AC)	6 (NW) (including large-G)
KEK/IH EP				0 (MH)	2 (MH)	~5 (LL) 1 (IHEP)
Sum	39	22	21	10	25	~ 20
G-Sum				31	57	

Statistics for Production Yield in Progress to reach ~ 60, within TDP-1. We may need to have separate statistics for 'production' and for 'research',