

Machine Detector Interface at ILD

Matthieu Joré – March the 28th

On behalf of the MDI/Integration group

Outline

- Introduction to the ILD detector
- Integration with the accelerator
 - Beam line components
 - QD0 integration
 - Updates on vibration calculations
 - Updates on vacuum calculations
- Integration in IR Hall
 - Motivations toward a platform
 - Push Pull mechanism
 - Cabling in the cavern
 - Pacman shielding
- Conclusions

Key features of ILD

detector

~Ф15x15m

15 000 tons

ILD Forward Region

Integration with the accelerator

ILD beam line components

QDO integration

- A big issue :
 - Superconducting magnet inside the detector
 - Allowable amplitude is 50nm@5Hz (a lower value is targeted)
 - Few millimeters allowed for adjustment to beam axis
- Previous design with pillar and tension rods from the main solenoid has shown its limitation (from Yamoaka san's recommendation)
 - We need to decouple the support of QDO from the FCal one
- A better vibration behaviour could result from having :
 - A lower weight (the 4 tons of FCals are removed)
 - No coupling with tension rods and coil
 - A less cantilever effect (shorter beam)
 - A better coherency with machine

QD0 support

New QDO support

Having 2 square tubes :

QD0 one

- Fastened to machine tunnel
- Better coherency with machine vibrations
- Supports also Kicker and BPM (same reference)

FCals one

- Could be supported from pillar and tension rods
- Alignment possible and kept between garage and beam position

5 mm gap between both supports

Machine concrete

Pillar

Tension rods

Vibration calculation results

 OK for QD0 support even in the case of the CERN high noise

From Yamaoka san, see also Tauchi san's talk

Updates on vacuum calculations

- The aim of these one was to simulate with details the present design and check compatibility with IR interface document
 - Precise results will be shown in a next presentation

Optimized annular triode pump for experimental areas in the LHC M. Busso and all, LHC Project Report 670

- Main parameters
 - Integrated ion pump Atlas like close to the IP (pumping speed about 120l/s)
 - 2 ion pumps (15l/s) between PP valves and QDO
 - Cryo pumping effect due to QD0
 - Small in situ baking or good preparation (heat treatment and assembly in dry air condition)
 - Targeted pressure is below 10-9mbar in static condition

Results on vacuum

UNDER STATIC CONDITION

QD0 + IP region

From B. Mercier (LAL)

Integration in the IR Hall

Motivations toward a platform

A platform could :

- Maintain all pieces of the detector during push pull :
 - Everything moves together
 - The movement is safer for the detector
- Ease and speed up the alignment on beam :
 - Detector alignment could be performed on garage position (when we have time) and kept when moving on beam position
 - The platform could be aligned one first time and then replaced after each push-pull with hard references (repeatability could then reach 1mm)

- Make a cleaner hall:

all cables/services are below the platform

Platform considerations

- Roller or airpads could be used for moving
 - Airpads would ease the adjustment on beam

- Special earthquake protection supports could provide many things (from Alain Hervé):
 - Protection against earthquakes if necessary.
 - Active vertical positioning system to maintain experiment axis on beam axis independently of vertical ground setting
 - An isolation of the platform and experiment from ground noise and vibrations and isolate ground from vibrations coming from the experiment itself.

Support of the platform

View from below (Rollers)

10kt unit Anti-Seismic support

Four support lines for 4'000 tons each

From A. Hervé, K. Sinram, M. Oriunno

Push Pull mechanism as SiD proposal

Cabling/services

Cable-chains and power bus-bars

From Andrea Gaddi

ILD in IR Hall

Pacman compatible with SiD

From A. Hervé, K. Sinram, M. Oriunno

Conclusions

- Important steps have been made:
 - Better understanding of the QD0 support and the vacuum
 - A first idea of a push pull scenario and mechanism
 - Integration of both detectors in the hall seems possible even if their philosophy is different
- BUT the common effort between detectors concepts and BDS people have to be reinforced in the hottest topics:
 - IR Hall design
 - Engineering studies on the push pull mechanism including the platform design
 - Supporting QD0 (Do we need a common solution with SiD?)
 - Etc....

Thank you very much for your attention