ilc

Impacts of SB2009 on the Higgs Recoil Mass Measurement

Hengne Ll

Hengne.Li@in2p3.fr

LAL/Orsay, 91898 Orsay Cedex, France

LPSC/Grenoble, 38026 Grenoble Cedex, France

1

2010-MAR-28

HENGNE LI

Outline

□ The Object of this study:

get to know and to understand the impact of SB2009 on the Higgs recoil mass and cross-section measurement.

2

LCWS2010, BEIJING MAR. 2010

Beam Simulation

- □ Estimation of the Integrated Luminosities
- □ Fast Simulation of the ILD detector

HENGNE LI

- Results
- Discussions -- to understand the results

□ Summary

2010-MAR-28

Beam Simulation

Using GUINEA-PIG with SB2009 Beam parameters given by Brian Foster's talk on SB2009 Meeting at DESY 2009

Estimation of the Integrated Luminosity

Estimate the Integrated Luminosity for various sets of beam parameters according to Peak Luminosities: taken RDR 500 as reference

$$\mathcal{L}_{\mathrm{int}} = rac{\mathcal{L}_{\mathrm{peak}}}{\mathcal{L}_{\mathrm{peak},\mathrm{RDR500}}} \cdot \mathcal{L}_{\mathrm{int},\mathrm{RDR500}}$$

Resulting numbers:

HENGNE LI

	RDR			SB2009 w/o TF				SB2009 w/ TF			
$\sqrt{s} \; (\text{GeV})$	250	350	500	250.a	250.b	350	500	250.a	250.b	350	500
Peak L $(10^{34} \text{cm}^{-2} \text{s}^{-1})$	0.75	1.2	2.0	0.2	0.22	0.7	1.5	0.25	0.27	1.0	2.0
Integrated L (fb^{-1})	188	300	500	50	55	175	375	63	68	250	500

4

2010-MAR-28

Fast Simulation

- A dedicated Fast Simulation Algorithm is developed for the ILD concept
- \Box Parameterize the Momentum Resolution as a function of P and $\cos\theta$
- The MC true momentum of a given muon is smeared according to this parameterization.

Results

Only muon-channel, Beam Pol. (e-: -80%, e+: +30%),

- Results at Ecm=250GeV: Scaled from LOI full simulation study
- Results at Ecm=350GeV: Fast simulation, major background ZZ and WW, same

analysis strategy as LOI study.

Beam Par	$\mathcal{L}_{\text{int}} \text{ (fb}^{-1})$	ϵ	S/B	$M_H ({\rm GeV})$	σ (fb) $(\delta\sigma/\sigma)$
RDR 250	(188)	55%	62%	(120.001 ± 0.043)	$11.63 \pm 0.45 \ (3.9\%)$
RDR 350	300	51%	92%	120.010 ± 0.084	$7.13 \pm 0.28 \ (4.0\%)$
SB2009 w/o TF 250b	55	55%	62%	120.001 ± 0.079	11.63 ± 0.83 (7.2%)
SB2009 w/o TF 350 $$	175	51%	92%	120.010 ± 0.110	7.13 ± 0.37 (5.2%)
SB2009 TF 250b	68	55%	62%	120.001 ± 0.071	$11.63 \pm 0.75 \ (6.4\%)$
SB2009 TF 350	250	51%	92%	120.010 ± 0.092	7.13 ± 0.31 (4.3%)

- □ What we can learn from the table?
 - □ RDR vs. SB2009:
 - □ Luminosity of SB2009 is smaller than RDR: worse results
 - □ w/ TF vs. w/o TF:

2010-MAR-28

- □ w/ TF has larger luminosity: better results
- □ Ecm 250 vs. 350 GeV:
 - □ ZH cross-section is bigger at 250GeV
 - □ S/B is higher at 350GeV

HENGNE LI

 \Box δM_H is worse at 350GeV, while $\delta \sigma / \sigma$ is better at 350GeV

6

Best: RDR250 2nd Best in SB2009:

- Мн:
 - SB2009 TF 250
- σ SB2009 TF 350

Dissection Chart

2010-M/

Results

Only muon-channel, Beam Pol. (e-: -80%, e+: +30%),

- Results at Ecm=250GeV: Scaled from LOI full simulation study
- Results at Ecm=350GeV: Fast simulation, major background ZZ and WW, same

analysis strategy as LOI study.

Beam Par	$\mathcal{L}_{\text{int}} \text{ (fb}^{-1})$	ϵ	S/B	$M_H \; ({\rm GeV})$	σ (fb) $(\delta\sigma/\sigma)$
RDR 250	(188)	55%	62%	(120.001 ± 0.043)	$11.63 \pm 0.45 \ (3.9\%)$
RDR 350	300	51%	92%	120.010 ± 0.084	7.13 ± 0.28 (4.0%)
SB2009 w/o TF 250b	55	55%	62%	120.001 ± 0.079	11.63 ± 0.83 (7.2%)
SB2009 w/o TF 350 $$	175	51%	92%	120.010 ± 0.110	7.13 ± 0.37 (5.2%)
SB2009 TF 250b	68	55%	62%	120.001 ± 0.071	$11.63 \pm 0.75 \ (6.4\%)$
SB2009 TF 350	250	51%	92%	120.010 ± 0.092	7.13 ± 0.31 (4.3%)

- □ What we can learn from the table?
 - □ RDR vs. SB2009:
 - □ Luminosity of SB2009 is smaller than RDR: worse results
 - □ w/ TF vs. w/o TF:

2010-MAR-28

- □ w/ TF has larger luminosity: better results
- □ Ecm 250 vs. 350 GeV:
 - □ ZH cross-section is bigger at 250GeV
 - □ S/B is higher at 350GeV

HENGNE LI

 \Box δM_H is worse at 350GeV, while $\delta \sigma / \sigma$ is better at 350GeV

8

Best: RDR250

- 2nd Best in SB2009:
 - M_H:
 - SB2009 TF 250
 - σ SB2009 TF 350

Comparison of Higgs Recoil Mass distributions with different beam parameters:

9

HENGNE LI

Question: Why TF 250 gives better M_H result than TF 350? TF 350 has higher peak. - Answer: although TF 350 higher peak, it also has much larger width! Question: Why it has larger width?

- Answer: its momentum resolution is bad. next slide.

HENGNE LI

2010-MAR-28

Comparison Before and After Detector Simulation: ZH at 250 GeV

For a given luminosity, Comparison Before and After Detector Simulation.

2010-MAR-28

Now, we can also understand why δM_H is worse at 350GeV, while $\delta \sigma / \sigma$ is better at 350GeV ?

Because: the $\delta\sigma/\sigma$ is more sensitive to statistics than the width of the mass peak!

2010-MAR-28

HENGNE LI

Summary

- □ Worse results from SB2009 due to smaller luminosity
 - RDR250:
 $\delta M_H = 43 MeV$ $\delta \sigma / \sigma = 3.9\%$

 SB2009 TF 250:
 $\delta M_H = 71 MeV$ $\delta \sigma / \sigma = 4.3\%$

 SB2009 TF 350:
 $\delta \sigma / \sigma = 4.3\%$
- saving 15% construction cost <=> triple running cost : for a same δM_H
- □ TF gives better results than w/o TF

HENGNE LI

- □ at Ecm=350GeV, background suppression can be more efficient
- □ at Ecm=350GeV, given the luminosity, detector effect is dominant

16

We can determine the Higgs Spin Parity from angular analysis:

But, in the background suppression we employed many angular cuts!

The Object of this study:

- get to know and to understand the impact of SB2009 on the Higgs recoil mass and cross-section measurement.
- What issues may impact this measurement, in general?
 - (1) Physics:
 - (a) cross-section of ZH signal
 - (b) background
 - (2) Accelerator Effects:
 - (a) Integrated Luminosity
 - (b) Beam Energy Spread
 - (c) Beamstrahlung
 - (3) Detector Effects: momentum resolution of tracking

19

Event Generation

Event generation using PYTHIA:

□ Beam Pol. (e-: -80%, e+: +30%) at Ecm=350GeV

Reaction	Cross-Section
$ZH ightarrow \mu \mu X$	7.1 fb
WW	$346~{\rm fb}$
ZZ	$165 { m ~fb}$

Estimate the Integrated Luminosity for various sets of beam parameters according to Peak Luminosities: taken RDR 500 as reference

$$\mathcal{L}_{\mathrm{int}} = rac{\mathcal{L}_{\mathrm{peak}}}{\mathcal{L}_{\mathrm{peak},\mathrm{RDR500}}} \cdot \mathcal{L}_{\mathrm{int},\mathrm{RDR500}}$$

□ Resulting numbers:

HENGNE LI

2010-MAR-28

	RDR			SB2009 w/o TF				SB2009 w/ TF			
$\sqrt{s} \; (\text{GeV})$	250	350	500	250.a	250.b	350	500	250.a	250.b	350	500
Peak L $(10^{34} \text{cm}^{-2} \text{s}^{-1})$	0.75	1.2	2.0	0.2	0.22	0.7	1.5	0.25	0.27	1.0	2.0
Integrated L (fb^{-1})	188	300	500	50	55	175	375	63	68	250	500

20

Analysis

Same analysis procedure as for the LOI:

Cut-Chain

- (1) $|\cos \theta_{\mu}| < 0.99$
- (2) $P_{Tdl} > 20 \text{ GeV}$
- (3) $M_{dl} \in (80, 100) \text{ GeV}$
- (4) $acop \in (0.2, 3.0)$
- (8) $M_{recoil} \in (115, 150) \text{ GeV}$
- (9) Likelihood Further Rejection
 - (using variables P_{Tdl} , $\cos \theta_{dl}$, M_{dl} and acol)

□ Numbers of signal and bkgs: Ecm=350GeV

HENGNE LI

Reactions	$ZH \to \mu\mu X$	ZZ	WW
N _{initial}	1248	29k	61k
$N_{selected}$	633	658	30

21

LCWS2010, BEIJING MAR. 2010

2010-MAR-28

Analysis

22

LCWS2010, BEIJING MAR. 2010

2010-MAR-28

HENGNE LI

BKG suppression

23

2010-MAR-28

HENGNE LI

BKG Suppression

2010-MAR-28

24

Higgs Recoil Mass 250 vs 350

25

HENGNE LI