# Probing the Majorana nature in radiative seesaw models at collider experiments

### Shinya KANEMURA (U. of Toyama)

M. Aoki, SK and O. Seto, PRL 102, 051805 (2009).
M. Aoki, SK and O. Seto, PRD80, 033007 (2009).
M. Aoki, SK, K. Tsumura, K. Yagyu, PRD80, 015017(2009).
M. Aoki and SK, arXiv: 1001.0092.

LCWS2010, Beijing, China, March 26-30. 2010

# Introduction

- Higgs sector remains unknown
  - Minimal/Non-minimal Higgs sector?
  - Higgs Search is the most important issue to complete the SM particle contents.
- We already know BSM phenomena:
  - Neutrino oscillation

 $\Delta m^2 \sim 8 \times 10^{-5} \, eV^2$ ,  $\Delta m^2 \sim 3 \times 10^{-3} \, eV^2$ 

Dark Matter

 $\Omega_{\text{DM}} h^2 \sim 0.11$ 

– Baryon Asymmetry of the Universe

 $n_{\rm B}/s \sim 9 \times 10^{-11}$ 

To understand these phenomena, we need to go beyond-SM



NASA/WMAP Science Team

Atoms

4.6%

Dark Matter

23%

### Neutrino Mass

Neutirno Mass Term (= effective Dim-5 Operator)

$$L^{eff} = (c_{ij}/M) v^{i} v^{j} \varphi \phi$$

 $\langle \phi \rangle = v = 246 GeV$ 

Mechanism for tiny masses:

$$m_{ij}^{v} = [c_{ij} (v/M)] v < 0.1 eV$$

 $\frac{\text{Seesaw (tree level)}}{m_{ij}^{v} = y_i y_j v^2 / M} \qquad M \sim 10^{14} \text{GeV (for } y_i = O(1))$ 

Quantum Effects (Radiative Seesaw)N-th order of perturbation $m^{v}_{ij} = [1/(16\pi^{2})]^{N} C_{ij} v^{2}/M$ M=O(1) TeV

### Neutrino Mass

Neutirno Mass Term (= effective Dim-5 Operator)

$$L^{eff} = (c_{ij}/M) v^{i} v^{j} \varphi \phi$$

 $\langle \phi \rangle = v = 246 GeV$ 

Mechanism for tiny masses:

$$m_{ij}^{v} = [c_{ij} (v/M)] v < 0.1 eV$$

Seesaw (tree level) $m^{v}_{ij} = y_i y_j v^2 / M$  $M \sim 10^{14} \text{GeV}$  (for  $y_i = O(1)$ )

<u>Quantum Effects (Radiative Seesaw)</u> N-th order of perturbation  $m_{ii}^{v} = [1/(16\pi^{2})]^{N} C_{ii} v^{2}/M$  M=O(1) TeV

# Radiative Seesaw Model

A Neutrino Mass Generation Mechanism at Loop

### Feature

- 1. Extended Higgs (scalar) sector
- 2. Majorana nature

### Merit

A super high scale is not necessary.

Tiny  $m_v$  can naturally be deduced from TeV scale physics by higher order perturbation

Physics at TeV:

Testable at collider experiments

### Zee Model

2HDM + (charged singlet  $\omega^+$ ) Lepton # violaiting interaction  $\mu$ 



Excluded by the data



# The Zee-Babu model

Model:

SM +  $\omega^+$ ,  $\kappa^{++}$  (charged scalar singlets: L#=2)

Babu, PLB203,132(1988)



Bound on the masses:  $m_{\omega} > 160 \text{ GeV}$ ,  $m_{\kappa} > 770 \text{ GeV}$  (for  $g_{\mu\mu} \sim 1$ )

Babu, Macesanu (2003), Aristizabal Sierra, Hirsch (2006)

# The Ma model

Ma, PRD73,077301 (2006)



Model: 2HDM ( $Z_2$ -even  $\Phi_1$ ,  $Z_2$ -odd  $\Phi_2$ ) + RH-Neutrino ( $Z_2$ -odd  $N_R$ )

Neutrino masses generated at 1-loop The lightest Z<sub>2</sub>odd particle can be DM

DM candidate: Either  $\Phi_2^0$  ( $\xi_r^0$ ,  $\xi_i^0$ ) or N<sub>R</sub>

A special 2HDM:  $\Phi_2 = (\xi^+, \xi_r^0 + i \xi_i^0)$  does not receive VEV The second doublet is so-called Inert Doublet, or Dark Doublet

Example of parameters that explain the neutrino data, LFV data and the WMAP:  $M_N^{\alpha}=3$  TeV,  $M_{\xi r}=50$  GeV,  $M_{\xi i}=60$ GeV,  $M_{\xi+}=100$ GeV  $\lambda_5=O(10^{-2})$   $h_i^{\alpha}=O(10^{-5})$ 



N<sub>R</sub>



 $h_e^{1,2} = \kappa = O(1) >> h_{\mu}^{1,2} >> h_{\tau}^{1,2}$  for  $M_{NR}^{\alpha} = 3$ TeV, ...

# Typical mass spectra in RSMs





# Test of the models at collider experiments

Common features of the radiative seesaw models

**Extended Higgs sector** 

Charged Higgs physics (all)

Physics of  $\kappa^{++}$  (Zee-Babu model)

Scalar DM (Ma, AKS)  $\rightarrow$  invisible decay of the SM-like Higgs

#### The Majorana nature

LNV couplings (Zee-Babu) or TeV-scale N<sub>R</sub> with Z<sub>2</sub>parity (Ma, AKS)

LHC: pp (7 TeV 1fb<sup>-1</sup>, 14 TeV 10-100fb<sup>-1</sup>) Structure of Higgs sector, Invisible decay of Higgs can be explored

#### ILC: e<sup>+</sup>e<sup>-</sup>, e<sup>-</sup>e<sup>-</sup>

(E=300GeV-1TeV, 100fb<sup>-1</sup>-1ab<sup>-1</sup>)

Not only the Higgs sector and DM, but also Majorana nature can be explored

# Physics of Extra Higgs at LHC



# Physics of Extra Higgs at LHC

### Zee-Babu model

- Singly charged Higgs
- Doubly charged scalars can be discovered at LHC if it is lighter than 800 GeV

# Discrimination from triplet models?

Triplet: (H<sup>++</sup>, H<sup>+</sup>, H<sup>0</sup>)

# W<sup>+</sup>H<sup>+</sup>H<sup>--</sup>coupling is a useful probe

- Derivative gauge coupling in the triplet model
- No-such coupling in Zee-Babu model



# ILC

# TeV Right handed neutrinos at ILC

### **Radiative Seesaw**

- Z<sub>2</sub>-odd RH neutrinos
- Differently from tree level seesaw scenario, h<sub>e</sub><sup>α</sup> coupling can be even O(1) in RSMs
- The t-channel NR mediation diagram can be significant







Aoki, SK, arXiv:1001.0092

### 3-loop Model (AKS)

 $h_e^{1,2} = \kappa = O(1) >> h_{\mu}^{1,2} >> h_{\tau}^{1,2}$ for  $M_{NR}^{\alpha} = 3$ TeV,  $m_{H^+} = 100$  GeV,  $m_n = 50$ GeV

t-channel effect dominant

 $\sigma$ (e+e-→S<sup>+</sup>S<sup>-</sup>) = 87 fb (m<sub>S+</sub>=400 GeV for E=1TeV)

$$\begin{split} B(\mathsf{S}^+ &\rightarrow \mathsf{H}^+ \eta) = 100 \ \% \\ B(\mathsf{H}^+ &\rightarrow \tau^+ \eta) &\sim 100 \ \% \end{split}$$

e+e-→ S<sup>+</sup>S<sup>-</sup> → H<sup>+</sup>H<sup>-</sup> ηη →  $\tau^+\tau^-$  νν ηη

Signal:  $\tau^+\tau^- + E$ 



# Direct Test of Majorana Nature at e<sup>-</sup>e<sup>-</sup> collisions at ILC

- Tree Seesaw
- 1-loop Seesaw

E. Ma

- 2-loop Seesaw
   Zee-Babu
- 3-loop Seesaw

Krauss, Nasri, Trodden (2002) Aoki, SK, Seto (2009)



# Test the Majorana Nature at ILC

The sub-diagram itself can be directly Aoki, SK, arXiv:1001.0092
 measured at the e<sup>-</sup>e<sup>-</sup> collision.



There is no substantial BG, the signals can be easily seen

### Summary



- Radiative seesaw models are interesting , where the scale of neutrino mass generation can be lowered to TeV scales.
- We discussed collider phenomenology in these models
- They are characterized by
  - Extended Higgs sector
  - The Majorana nature (LNV interaction, TeV RH neutrinos)
- At the LHC, the Higgs sectors can be tested at LHC.
- The Majorana nature can also be directly tested at the ILC.
- The combined study at LHC and ILC (e<sup>+</sup>e<sup>-</sup>, e<sup>-</sup>e<sup>-</sup>) can clarify the possibility of radiative seesaw scenarios.

# Backup

# Physics of $\eta$ (DM)

### Invisible Decay of h

h is the SM-like Higgs but can decay into  $\eta\eta.$ 

B(h→ $\eta\eta$ ) = 36 (34) % for m<sub> $\eta$ </sub>=48 (55) GeV  $_{\frac{2}{2}}$ 

Testable via the invisible Higgs decay at LHC

#### **Direct Search**

 $\eta$  from the halo can basically be detected at the direct DM search (CDMS, XMASS)





# Extended Higgs sector in RSMs



Zee-Babu  $\kappa^{--} \rightarrow \mu^{-}\mu^{-}$ 

# Seesaw Mechanism?

Super heavy RH neutrinos (M<sub>NR</sub> ~ 10<sup>10-15</sup>GeV)

- Hierarchy between  $M_{NR}$  and  $m_D$  generates that between  $m_D$  and tiny  $m_v$  ( $m_D \sim 100 \text{ GeV}$ )

$$m_v = m_D^2 / M_{N_R}$$

Φ0





- Simple, compatible with GUT etc

NR

መ0

Introduction of a super high scale
 Hierarchy for hierarchy!
 Far from experimental reach...



# The Higgs sector

NNLO by

- The Higgs sector  $\Phi_1$ ,  $\Phi_2$  (2HDM) + S<sup>+</sup>,  $\eta$  (singlets) To avoid FCNC, additional softlybroken Z<sub>2</sub> symmetry is introduced :  $\Phi_1 \rightarrow + \Phi_1, \quad \Phi_2 \rightarrow - \Phi_2$ by which each quark/lepton couples to only one of the Higgs doublets. 4 types of Yukawa interactions!
- Neutrino data prefer a light H<sup>+</sup>(< 200GeV) Choose Type-X Yukawa to avoid
  - the constraint from  $b \rightarrow sy$ .

 $\Phi_1$  only couples to Leptons  $\Phi_2$  only couples to Quarks



# Lagrangian

 $Z_2$  (exact) : to forbid tree v-Yukawa  $SU(3) \times SU(2) \times U(1) \times Z_2 \times \tilde{Z}_2$ and to stabilize DM Z<sub>2</sub> (softly-broken): to avoid FCNC  $Z_2 \text{ even}(2\text{HDM}) + Z_2 \text{ odd}(S^+, \eta^0, N_R^{\alpha})$  $V = -\mu_1^2 |\Phi_1|^2 - \mu_2^2 |\Phi_2|^2 - (\mu_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.})$  $+\lambda_1|\Phi_1|^4 + \lambda_2|\Phi_2|^4 + \lambda_3|\Phi_1|^2|\Phi_2|^2$ Z<sub>2</sub> even 2HDM  $+\lambda_4 |\Phi_1^{\dagger}\Phi_2|^2 + \left\{ \frac{\lambda_5}{2} (\Phi_1^{\dagger}\Phi_2)^2 + \text{h.c.} \right\}$  $+\mu_{s}^{2}|S|^{2}+\lambda_{s}|S|^{4}+\frac{1}{2}\mu_{\eta}\eta^{2}+\lambda_{\eta}\eta^{4}+\xi|S|^{2}\eta^{2}$  $Z_2$  odd scalars  $+\sum_{a=1}^{2} \left\{ \rho_{a} |\Phi_{a}|^{2} |S|^{2} + \sigma_{a} |\Phi_{a}|^{2} \frac{\eta^{2}}{2} \right\}$ Interaction +  $\sum_{ab} \left\{ \kappa \epsilon_{ab} (\Phi_a^c)^{\dagger} \Phi_b S^- \eta + \text{h.c.} \right\}.$ a.b=

RH neutrinos

$$\mathcal{L}_{Y} = -\sum_{\alpha=1}^{2} \sum_{i,j=1}^{3} h_{i}^{\alpha} (e_{R}^{i})^{c} N_{R}^{\alpha} S^{-} + \sum_{\alpha=1}^{2} m_{N}^{\alpha} N_{\alpha}^{c} N_{\alpha} + \text{h.c.}.$$

# Strong 1<sup>st</sup> Order Phase Transition

