

Introduction

Sub-nanometric stability of the focusing system is required to maintain the luminosity to within a few percent of the design value.

Ground motion is a source of vibrations which would continuously misaligning the focusing elements.

The design of the support of the QD0 is a fundamental issue

3

Luminosity feedback systems and stability

Two Luminosity Feedback systems are implemented in ILC:

A 5 Hz to control the orbit in the BDS (low frequency)

A Intra-train system to address ground motion and mechanical disturbances (high frequency~1000 Hz)

The mechanical stability requirements of the QD0 are set by the capture range of the IP fast feedback, as written in the "Functional Requirements" document, ILC-Note-2009-050

 \bullet QD0 alignment accuracy: \pm 200 nm and 0.1 μ rad from a line determined by QF1s, stable over the 200ms time interval between bunch trains

• QD0 vibration stability: $\Delta(QD0(e+)-QD0(e-)) < 50$ nm within 1ms long bunch train "

[&]quot;The QD0 mechanical alignment accuracy and stability after beam-based alignment and the QD0 vibration stability requirement are set by the capture range and response characteristics [8] of the inter-bunch feedback system.

Ground motions (A.Seryi et al.)

Ground vibrations measurements are available for all the major accelerators sites in form of Power Spectrum Densities. Datasets available at http://vibration.desy.de

Main features:

Separation at ~few Hz between geology and human induced noise (pretty much the separation

between the slow and fast luminosity feedback)

Some site are quiet and some are noisy

Motion falls as $1/\omega^4$

For a given a ground motion time history x(t), the PSD is defined as

$$P(f) = \lim_{T \to \infty} \frac{1}{T} \left| \int_{-T/2}^{T/2} x(t) e^{-i\omega t} dt \right|^2$$

i.e. *PSD* is the Fourier transform of the *autocorrelation* function R(0) of te signal x(t).

The main property of the PSD is that the variance of x(t) is given by: $\begin{pmatrix} 2 & f_2 \\ -2 & f_3 \end{pmatrix}$

integrated power spectral density of vertical ground motion vs. cut frequency

Simplified PSD Models

$$P(f) \approx \frac{A}{f^4}$$

$$\sigma^2 = \langle x^2 \rangle = \int_{f_1}^{f_2} P(f) df$$

5

Coherence

6

Coherence:
$$N_{12}(f) = \frac{p_{12}}{\sqrt{p_1 p_2}} = J_0(\omega L/v)$$

If P1=P2, then:

Jo = 0th Bessel function

L= distance between points

v = speed of sound in rock, ~3 km/s

$$\rho(\omega,L) = p(\omega) 2\{1 - \text{Re}[N_{12}(\omega,L)]\}.$$

Relative displacement spectrum

FIG. 3. Correlation spectra of ground motion measured at CERN in the LEP tunnel [7]. The distances between sensors were 225, 500, 1000, and 2000 m.

Figure 3: Measured (symbols) and modeling spectra $p(\omega)$ of absolute motion and $p(\omega,L)/2$ of relative motion for the 2 a.m. SLAC site ground motion model.

Random Vibration effects Metric

7

Ground motion effects are usually accounted as perturbation of the lattice elements through the girders, the magnetic cells assumed point-like (rigid body)

Final Focusing element deforms along the full length under random vibration effects

How define the metric of the net effect of the displacement at the IP?

QD0 supports for ILD and SiD

ground

QD0 integration and movement as in SLD

Random vibrations model

$$P(f) \times |H(f)|^2 = Sy(f)$$

The Frequency Response Function for QD0 and SiD is obtained by FEA (e.g. ANSYS)

Frequency Response Function of QD0 on the door

QDO cantilevered + spring suspension from the barrel

Ends supported

Cantilevered

Power Spectrum (m²/Hz)

Relative Displacement r.m.s (meters)

Relative displacement (r.m.s.) meters

End Supports vs. Cantilevered QD0

From this....

Ground motion through the feet

SiD Free Vibration Mode

| Notal Sciution | Step-1 | Size -2 | Size -2

1st Mode, 2.38 Hz

2nd Mode, 5.15 Hz

3rd Mode, 5.45 Hz

4th Mode, 6.53 Hz

7

6th Mode, 13.7 Hz

Harmonic Analysis

Frequency Response Function

Conclusions

- Both End-Supports and cantilevered support scheme of the Final Focus show acceptable sub-nanometric relative vibration values.
- The End-Supports provide the lowest r.m.s. relative displacements.
- Providing supports from the doors (as in SiD) is perfectly compatible with the nanometric stability requirements.
- It improve the correlation of the PSD relative noise spectra
- It is a natural way to make a passive isolator (large door Mass low K feet), shifting the high static transmissibility at the floor-detector interface
- It has many advantages like:

Make the Final Focus system an integral part of the detector

Allow to get low L*

Provide insurance of re-alignment in the push-pull

Simplify the push-pull operation