

ithium vapour

Wakefield acceleration

Recent Progress on CEPC Plasma Injector

Ion channel

Prof. Wei Lu @ THU and Dazhang Li @ IHEP, CAS On behalf of the IHEP-THU-BNU AARG team is electrons

Nov. 11, 2021

Background: CEPC/CEPC plasma injector

Current status: Simulations & experiments

Outlook: Future schedule towards TDR

CDR (Acc.) International Review @ 2018.6.28-6.30 & Final Released @ 2018.9.2

Recent progress on CEPC Plasma Injector @ 2021 CEPC Workshop 2021-11-11 3

Right now, the CEPC linac baseline has been changed. The linac will provide 20 GeV beams instead of 10 GeV.

Can we use a 10m scale plasma accelerator to boost the beams' energy from 10GeV to 20 GeV or higher?

measure

• The Earth field ~0.2-0.5 Gs, the remnant field of silicon steel lamination ~ 4-6 Gs.

Thinking beyond CDR

- Nominal field error: ~0.1%
- Uniformity requirement: ~0.05%
- Eddy current effect
 - Sextupole coils outside vacuum chamber

LWFA or PWFA? A simple math problem: 1nC, 100Hz, 10 → 40 GeV: ΔP_{ave} ~ 3kW Laser → e-: ~1%, 1PW/30fs/10Hz ×1000?? e- driver → e- trailer: 60% per stage!!

Plasma wave excitation, 1~100GeV/m gradient

> **THU team**:

Prof.: <u>W. Lu, J. F. Hua,</u>

- Staff: <u>Dr. S. Y. Zhou</u>, <u>S. Liu</u>, <u>Y. Ma</u>, <u>Y. P. Wu</u>
- PhD: <u>B. Peng</u>, <u>T. L. Zhang</u>, <u>H. Y. Xiao</u>, <u>Z. Song</u>, <u>Y. Fang</u>, <u>F. Yang.....</u>

> IHEP team:

- Prof.: J. Gao, Y. H. Li, J. R. Zhang, Y. S. Huang, X. P. Li
- Staff: D. Z. Li, M. Zeng, D. Wang, C. Meng, Y. W. Wang, X. H. Cui, G. Shu
- PhD: X. N. Wang, J. Wang, Y. L. Liu

> BNU team:

Prof. W. M. An and Dr. J. G. Huang

CPI conceptual Design V1.0→V2.0

Booster Requirement			
Energy (GeV)	45.5 (0.2%)		
Bunch Charge (nC)	0.78		
Bunch length(um)	<3000		
Energy Spread(%)	0.2		
ε _N (μm∙rad)	<800		
Bunch Size(um)	<2000		

- > Electron Acceleration → HTR
- ➢ Positron Acceleration → Stable mode
- Conventional Accelerator optimization
- Beam manipulations

- Background: CEPC/CEPC plasma injector
- Current status: Simulations & experiments
- Outlook: Future schedule towards TDR

$$\eta = \frac{\sum_{i=1}^{n} E_{i} > E_{i}}{\sum_{j=1}^{n} E_{d} > E_{j}} (E_{i} - E_{trailer}) q_{i}}{\sum_{j=1}^{n} E_{d} > E_{j}} (E_{driver} - E_{j}) q_{j}}$$

Nonlinear(Bubble) regime: nb/np>>1 or $\Lambda = n_b/n_p k_p^2 \sigma_r^2 > 1$

HIGH TRANSFORMER RATIO

Lu W, Huang C, Zhou M, et al, PRL(2006)

HTR mode, TR ≥ (45-10)/10=3.5 LTR mode, TR ≥ (20-10)/10=1

beam	Driver	Trailer
plasma density n _p (× $10^{16} cm^{-3}$)	0.50334	
Driver energy E (GeV)	10	10
Normalized emittance $\epsilon_n(mm mrad)$	50→20	100
Length (um)	600	77
(matched) Spot size(um)	20→3.87	20→8.65
Charge (nC)	5.8	1→0.84
Energy spread δ_E (%)	0	0
Beam distance (um)	14	19

Accelerating distance (m)	10.65
Driver energy $E(GeV)$	1.30
Trailer energy $E(GeV)$	45.5
Normalized emittance $\epsilon_n(mm mrad)$	98.44
Charge(nc)	0.84 (0.78)
Energy spread $\delta_E(\%)$	0.56
TR	~ 4
Efficiency (%) (driver \rightarrow trailer)	59.1

- > 10 GeV \rightarrow 45.5 GeV e- acc. (on paper) work
- > Much smaller $\sigma_{x, y} \rightarrow$ Increase Linac difficulty
- > Trailer's charge close to minimum request
- > Assuming fully symmetric drive beam!

Simulation performed by Dr. X. N. Wang and Prof. W. M. An (2020)

Perturbation		Limitation	limiting factor
heam charge	Driver	[-1%, 0.8%]	$egin{array}{c} {\cal E}_t \ {\delta}_E \end{array}$
	Trailer	[-0.24%, 2%]	E_t
hoom longth	Driver	±1%	E_t
beam length	Trailer	±5%	E_t
initial energy	driver	[-1%, 0.38%]	E_t
	trailer	[-1.75%, 0.37%]	E_t
initial energy spread		3.9%	$egin{array}{c} {\cal E}_t \ {\delta}_E \end{array}$
Spot size	driver	[-40%, 2%]	E_t
	trailer	[8%, 8%]	E_t

Simulation performed by Dr. X. N. Wang and Prof. W. M. An (2020)

Initial noise simulation vs. real case

- > An important question is "How do the beams evolve from their initial statistical noise?"
- > Another question is "Does the hosing instability set any limit on the transformer ratio of PWFA?"

Initial noise of a collimated beam

- > Particle number is N, transverse profile is Gaussian with r.m.s. size $\sigma_r \rightarrow$ the jitter of bunch center obeys a Gaussian distribution $N(0, \sigma_r/\sqrt{N})$
- For PIC simulation, number of macro particle is much less than practical particle number, so the initial noise level is different in magnitudes.
- > For a 5.8nC driver, the particle number in QuickPIC is $128 \times 128 \times 256$, which is $1/93^2$ of the practical particle number.

In the QuickPIC simulation, if the drive beam is not fully symmetry, even let $\langle x_d \rangle = 0$, the hosing instability occurs much earlier than ideal case. For example, adding only 0.025nm slice jitter to drive beam leads to severe hosing instability. Is it physical or not? We did different studies and found that:

- > Increase particle number \rightarrow hosing improved
- > Increase the jitter (noise) to dx level or larger \rightarrow hosing became more serious
- > Fully asymmetry to partial asymmetry \rightarrow hosing improved

It seems physical. How can we evaluate / avoid / damping / the hosing instability?

Slide from Dr. X. N. Wang and Prof. W. M. An (2020); Dr. M. Zeng (2021)

beam	Driver	Trailer		V1.0 HTR	V2.0 LTR
plasma density $n_p(\times 10^{16} cm^{-3})$	0.50334		Accelerating distance (m)	10.7	4 8
Driver energy $E(GeV)$	10	10		10.1	1.0
Normalized emittance	00	400	Trailer energy $E(GeV)$	45.5	25
$\epsilon_n(mm mrad)$	20	100	Normalized emittance $\epsilon_n(mm \ mrad)$	98.36	100
Length(um)	300	77	Charge(nC)	0.84	1.21
(matched)Spot size(um)	3.87	8.65	Energy spread $\delta_E(\%)$	0.40	1
Charge(nC)	5.8→4	0.84→1.24		- 1	. 16
Energy spread $\delta_E(\%)$	0	0	IK	~ 4	~ 1.0
Beam distance(um)	149→184		Efficiency(%) (driver -> trailer)	60.0	54.0
= ()					

Slide from Dr. X. N. Wang, Dr. S. Y. Zhou and Prof. W. M. An (2021)

Backup scheme with TR ~ 1.5

Asymmetry Ratio	Energy	Emittance (mm·mrad)	Bunch charge (0.2%)	Bunch charge (2%)	rms Energy spread
0	25.02 GeV	100 / 100	0.45 nC	1.36 nC	0.4%
0.1%	24.97 GeV	111 / 108	0.36 nC	1.36 nC	0.4%
1%	24.93 GeV	174 / 163	0.28 nC	1.36 nC	0.44%
2.5%	24.89 GeV	431 / 294	0.24 nC	1.33 nC	0.62%
10%	25.45 GeV	1057 / 1659	0.03 nC	0.28 nC	2.79%
2.5% (baseline)	26.25 GeV	645 / 496	1 nC (26.25 ±1%),	ΓR ~ 1.76, η~52%	0.86%

According our theoretical analysis, TR ~ 1-1.5 may be acceptable if without extra damping methods

- Main Linac (Scheme-I)
 - If RF gun can provide electron beam with required shape, the main linac just accelerate beam to 10GeV.
 - Acceleration:
 - The longitudinal shape could be almost maintained
 - Short-range longitudinal wakefield + short bunch length + high bunch charge
 - Energy spread: 1.8% \rightarrow Difficult design for FFS

- Main Linac (Scheme-II)
 - In order to decrease the energy spread and more flexible and compatible with other beam shaping scheme, one bunch compressor is introduced
 - Long bunch length beam + bunch compressor +short bunch length beam acceleration
 - High accelerating gradient s-band accelerating structure: 27MV/m
 - Energy spread: 0.275%
 - Longitudinal deformation, need more optimization

• Superconducting wiggler \rightarrow shorter damping time & smaller equilibrium emittance

By Dr. Dou Wang and Cai Meng from IHEP (2020)

	BCI	BCII	BCIII
Initial energy (MeV)	400	400.1	405
δinj (%)	0.05	0.367	2.17
Initial σz (mm)	4.4	600	100
f_{RF} (GHz)	2.860	5.712	5.712
Voltage(GV)	0.0056	0.12	4.18
Gradient (MV/m)	20	40	40
L (m)	0.28	3	104
$\phi_{\!_{RF}}$ (degree)	89	88	61.5
R ₅₆ (mm)	1200	27.6	5.5
Final energy(MeV)	400.1	405	2400
δext (%)	0.367	2.17	1.83
final σz (um)	600	100	20

- Energy: $400 \text{MeV} \rightarrow 2.4 \text{ GeV}$
- Bunch length: 4.4mm $\rightarrow 20$ um
- Energy spread: $0.054\% \rightarrow 1.8\%$

- A "perfect" wakefield means:
 - > Flat longitudinal wakefield, particles at different position experience same Ez
 - > Transverse wakefield can provide focusing forces to the accelerated particles

So, the blowout wakefield in uniform plasmas is quite fit for e- acceleration, while unfit for e+ acceleration

- High efficiency 60%
- Low energy spread ~0.5%
- **Small emittance growth**
- Need e- driver, e+ trailer and plasma channel coaxial, not very practical

PHYSICAL REVIEW LETTERS 127, 174801 (2021)

Editors' Suggestion

High Efficiency Uniform Wakefield Acceleration of a Positron Beam Using Stable Asymmetric Mode in a Hollow Channel Plasma

Shiyu Zhou,¹ Jianfei Hua¹,¹ Weiming An,² Warren B. Mori,³ Chan Joshi,³ Jie Gao,⁵ and Wei Lu^{1,4,*} ¹Department of Engineering Physics, Tsinghua University, Beijing 100084, China ²Beijing Normal University, Beijing 100875, China ³University of California Los Angeles, Los Angeles, California 90095, USA ⁴Beijing Academy of Quantum Information Sciences, Beijing 100193, China ⁵Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

(Received 21 December 2020; revised 17 August 2021; accepted 7 September 2021; published 22 October 2021)

Plasma wakefield acceleration in the blowout regime is particularly promising for high-energy acceleration of electron beams because of its potential to simultaneously provide large acceleration gradients and high energy transfer efficiency while maintaining excellent beam quality. However, no equivalent regime for positron acceleration in plasma wakes has been discovered to date. We show that after a short propagation distance, an asymmetric electron beam drives a stable wakefield in a hollow plasma channel that can be both accelerating and focusing for a positron beam. A high charge positron bunch placed at a suitable distance behind the drive bunch can beam-load or flatten the longitudinal wakefield and enhance the transverse focusing force, leading to high efficiency and narrow energy spread acceleration of the positrons. Three-dimensional quasistatic particle-in-cell simulations show that an over 30% energy extraction efficiency from the wake to the positrons and a 1% level energy spread can be simultaneously obtained. Further optimization is feasible.

DOI: 10.1103/PhysRevLett.127.174801

- **1. Decrease** the energy spread from 1% to 0.1%
- 2. Study Hollow channel impact on beam quality

Planned to finish it before February, but delayed by COVID-19. Re-started in Oct. 2020

Slides from Dr. Shuang Liu (2020)

Slides from Dr. Shuang Liu (2020)

- Background: CEPC/CEPC plasma injector
- Current status: Simulations & experiments
- Outlook: Future schedule towards TDR

Pulse compressor efficiency: 72%

80	41			6.5	1 mJ	
	ZERO DISPLAY	λ. DaTA 800	RANGE nm Auto	MODE Energy	ZERO DISPLA Off Statisti	IY DATA cs Acquisitio
800 nm Auto Energy	Off Statistics ACC	Aver	rage Value:		6.39 mJ	
Average Value:	8.87 mJ	Max	timum Value:		6.59 mJ	
Maximum Value:	9.20 mJ	Mini	imum Value:		6.05 mJ	
Minimum Value:	8.53 mJ	RMS	S Stability:		1.253 %	Sumalar.
RMS Stability:	1.198 % Runni	ing	Stability:		8.346 %	F12 pulses
PTP Stability:	7.576 % 323 p	pulses				515 puises
			A 0)	1	-
	2 🥂 📅	λ.				
	· · · · ·					

Slides from Dr. Bo Peng (2020)

Wait for the beamtime

Slides from Dr. Bo Peng (2020)

\checkmark	Upgrade laser system, energy \sim 130mJ, pulse duration \sim 30 fs	done
✓	Installation of light path, gas loop and diagnostic system	done
\checkmark	Laser and electron beam synchronization	done

✓ Plasma dechirper experiment results, electron deceleration in plasmas ($\sim 10 \text{ MeV}$)

SLAC National Accelerator Laboratory

FACET-II PROPOSAL

Date: Sep. 13th 2020

A. EXPERIMENT TITLE: Two Stage Cascaded High-Transformer-Ratio Plasma Wakefield Accelerator

B. PROPOSERS & REQUESTED FACILITY:

Principal Investigator:	Wei Lu, Mark Hogan, Chan Joshi, Jie Gao
Institution:	Tsinghua University, SLAC, IHEP
Contact Information:	weilu@tsinghua.edu.cn
Experiment Members:	Shiyu Zhou, Jianfei Hua, Dazhang Li
Collaborating Institutions:	
Funding Source (optional)	NSFC、DOE
Approximate Duration:	3-5years

SLAC National Accelerator Laboratory

FACET-II PROPOSAL

Date: Sep. 13th 2020

A. EXPERIMENT TITLE: Stable Mode in Hollow Channel

B. PROPOSERS & REQUESTED FACILITY:

Principal Investigator:	Wei Lu, Chan Joshi, Mark Hogan, Jie Gao
Institution:	Tsinghua/UCLA/SLAC/IHEP
Contact Information:	weilu@tsinghua.edu.cn
Experiment Members:	Shiyu Zhou, Jianfei Hua, Dazhang Li,
Collaborating Institutions:	
Funding Source (optional)	NSFC、DOE
Approximate Duration:	3 years

Hello Wei,

E-mail from Prof. Mark Hogan, head of plasma acc. group in SLAC

So good to hear from you! I very much agree that these are important ideas that can be very impactful for our field. I want to do everything we can to ensure that the proposals are highly reviewed and that we develop a plan that ensures the best chance of success.

Proposals will be reviewed tonight by SLAC group!!

Electron acceleration

- Start-to-end simulation is performed and single-parameter error analysis is presented
- The asymptotic solution agrees well with the numerical solution and the PIC simulation results. Some damping mechanisms, such as ion motion, ion scattering, plasma temperature, betatron radiation, etc. are not considered in all these solutions.
- The growth of hosing instability from statistical noise is acceptable when transformer ratio is 1-1.5, detailed error analysis for TR=1.5 is ongoing
- There are powerful damping mechanisms in a real PWFA. TR≥3 is still alive

Positron acceleration

Asymmetry beam scheme is well accepted, more schemes are studied

Experiments affected by COVID-19, but recovered now

- Plasma dechirper experiment got good results, and experiment on SXFEL is ongoing.
- A dedicated TF for PWFA is crucial, we are working on it
- CPI is still at conceptual design stage, and still has a big gap to TDR or EDR stage compared with other mature systems. No stoppers, also no clear timetable. However, we are on an unexplored path instead of a "me too" path. Keep going is more important than a clear timetable.

