Software for the CEPC Drift Chamber

Yao Zhang

On behalf of drift chamber working group

CEPC International Workshop

11 Nov. 2021

- Motivation
- DC simulation
- DC tracking
- Summary

Drift Chamber(DC) Software

- Drift chamber is the key detector in the 4th conceptual detector design to provide PID
 - Good PID ability ($2\sigma \pi/K$ separation at P < ~ 20 GeV/c)
 - Precise momentum measurement (eff. ~100%, σp<=0.1%)
- Motivation of DC software project
 - Development of simulation and reconstruction for DC
 - Support the detector design, optimization and performance study
 - Support physics sensitivity study

Requirements for DC software

- Modular design and friendly interfaces
- Easily integrated with common tools (ACTS, Genfit etc.)
- Reuse existing algorithms from other experiments
- Application of advanced technic (ML) to simulation and reconstruction
- Manpower
 - IHEP: Yao Zhang, Tao Lin, Wenxing Fang, Chengdong Fu, Ye Yuan, Weidong Li
 - SDU: Mengyao Liu, Xueyao Zhang, Xingtao Huang

A PID drift chamber

Physics	Measurands	Detector	Performance
process		subsystem	requirement
$\begin{array}{l} ZH, Z \rightarrow e^+e^-, \mu^+\mu^- \\ H \rightarrow \mu^+\mu^- \end{array}$	$m_H, \sigma(ZH)$ BR $(H \to \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$

Requirements of The CEPC tracker

DC software

The drift chamber software has been developed from scratch

- CEPCSW
 - Gaudi based framework
 - External libraries and tools
- Geometry and field map
 - DD4hep
 - Non-uniform magnetic field: done
- Data model
 - EDM4hep and FWCore
 - dN/dx event model: in progress
- Drift chamber
 - DC simulation: done
 - DC digitization: done
 - Waveform simulation: in progress
 - Waveform reconstruction: in progress
 - Track fitting with measurement: done
 - dN/dx reconstruction: in progress

Drift chamber simulation and reconstruction flow

Event data model

- DC implement the data model following the EDM4hep
- The extension of the current EDM4hep to accommodate the needs from dN/dx studies is in progress

Non-uniform B-Field

- A generic B-field service is developed and integrated with DD4hep
 - CSV-like format data from magnetic group
 - Bz=3Tesla, in DC region non-uniformity<5% in z direction and <55% in radial

Drift Chamber Parameters in CEPCSW

• The base line configuration of DC in CEPCSW

Half length	2980 <i>mm</i>	
Inner and outer radius	800 to 1800 <i>mm</i>	
# of Layers	100	
Cell size	~9.6 mm x 9.6 mm	
Gas	He:C ₄ H ₁₀ =90:10	
Single cell resolution	0.11 <i>mm</i>	
Sense to field wire ratio	1:3	
Total # of sense wire	81631	
Stereo angle	1.64~3.64 <i>deg</i>	
Sense wire	Gold plated Tungsten ϕ =0.02 <i>mm</i>	
Field wire	Silver plated Aluminum ϕ =0.04 <i>mm</i>	
Walls	Carbon fiber 0.2 <i>mm</i> (inner) and 2.8 <i>mm</i> (outer)	

CRD tracker o1 v01

DC Simulation in the Simulation Framework

• A new implementation of drift chamber in the CEPCSW

DC Simulation

- Following the common scheme for detector description
 - DC constructor (axial and stereo layers available)
 - Detector/DetDriftChamber/src/driftchamber/DriftChamber.cpp
 - Detector/DetSegmentation/src/GridDriftChamber.cpp
 - XML based compact files for drift chamber detector description
 - DC : Detector/DetDriftChamber/compact/det.xml
 - CRD: Detector/DetCRD/compact/CRD_oX_vYY/CRD_o1_vYY.xml
 - Layer number and stereo angle etc. are configurable
- Cell partitioning with segmentation
 - No cell volume in Geant4 to speed up simulation
 - Flexible way to virtual mapping between cell and position
 - Consistent between simulation and reconstruction
- Simple digitization
 - Constant drift velocity: V_{drift}=40 μ m/ns & fixed spatial resolution: σ =110mm
 - Make association between truth hit and digit

Stereo layer of drift chamber

Hitmap of MC hits in DC

dE/dx Simulation

- The configurable fast sampling tool
 - Hit/track level sampling from empirical formula
 - Other sampling method is easy to be plugged in
- A track level dN/dx simulation in CEPCSW is ready

= dN/dx Simulation and Reconstruction See W.X. Fang's talk for detail

- Implement the DC waveform simulation and analysis
- Integrate Geant4 and Garfield++ for precisely simulation
 - To handle a more precise energy loss and ionization process
- Fast signal response simulation
 - A neural network waveform generation is developed
 - Gives ~ 200 times speed up according to Garfield++
- A waveform reconstruction with Fourier transform
 - Other reconstruction algorithm can be easily plugin
- The event model for dN/dx study is under development
 - dN/dx tools can be reused and plugin to CEPCSW
- Ensure the dN/dx study by physics channels

Wenxing Fang (IHEP) On behalf of CEPC drift chamber working group CEPC International Workshop 2021.11.11

Waveform reconstruction with Fourier transform

DC Reconstruction

- Track finding
 - 1. A fake track finding from MC truth
 - 2. Silicon tracking migrated

Track fitting

- 1. New developed track fitting -- RecGenfitAlg
- 2. A full silicon+DC tracking -- KalTest
- dE/dx and dN/dx reconstruction
 - Dummy algorithm to provide track level dE/dx or dN/dx

Data flow of DC reconstruction

Track Fitting--- RecGenfitAlg

- Based on Genfit (https://github.com/GenFit/GenFit/)
 - An experiment-independent generic track fitting framework
 - Open sourced, active development and large user community
 - Official track fitting for Bellell, also used by PANDA, COMET, GEM-TPC etc.
 - Become the developer of Genfit
- Main features of Genfit
 - Support various detector types:
 - Pixel or strip
 - TPC
 - Drift chamber or tube
 - and combinations of above
 - Detector geometry and field map easy to integrate
 - GDML and ROOT format
 - Provide several fitting algorithms: Kalman filter, DAF, GBL etc.
 - Extrapolation tools

(a) Measurements with covariance (yellow), planar detectors and drift isochrones (cyan), respectively, and reference track (blue).

Track Fitting--- RecGenfitAlg

• New implemented of a track fitting with Genfit in CEPCSW

- Implemented Genfitfield class to get BField from DD4hep
- Implemented GenfitMaterIInterface class to get material and geometry from DD4hep
- A track converter event data model with GenfitTrack with EDM4hep
- A wrapper class GenfitFitter to the Genfit track fitters
- RecGenfitAlg
 - 1. Kalman track fitting combine the silicon detector and drift chamber
 - 2. Space point measurement is implemented
 - 3. Pixel, strip and wire measurements are realized, validation is on going

VXD×6: σ_{rphi.z}=2.8μm,6μm,4μm,4μm,4μm,4μm

SIT ×4: σ_{rnhi} =7.2µm, σ_{z} =86µm

Future Plan

• dN/dx

- Event data model development
- Waveform simulation and analysis study
- Background in simulation and reconstruction
- Track finding development
 - Machine learning
 - Track finding from silicon seed or self-tracking
- Release for detector and physics performance study

Summary

- A drift chamber software developed from scratch
- The stereo wire version of DC software is released
 - The configurable simulation
 - Precise dN/dx simulation
 - Fitting with detector measurement
- Future plan
 - The precise dN/dx simulation and analysis study in CEPCSW
 - Validation and performance study of tracking
 - Develop the track finding algorithm

Schema of dN/dx study in CEPCSW

Track fitting --- KalTest

• Geometry

=

- VXD×6: σ_{rphi.z}=2.8μm, 6μm, 4μm, 4μm, 4μm, 4μm
- SIT ×4: σ_{rphi} =7.2µm, σ_{z} =86µm
- DC ×1: σ_{rphi} =110µm, σ_{z} =1mm
- SOT×1: σ_{rphi} =7.2µm, σ_{z} =86µm

Joint Workshop of the CEPC Physics, Software and New Detector Concept, Yangzhou