Particle ID & 3D reconstruction with the Dual-readout calorimeter simulation

Sanghyun Ko (sanghyun.ko@cern.ch)

Seoul National University

On behalf of the dual-readout calorimeter team

Dual-readout calorimeter

Dual-readout calorimetry

- The major difficulty of measuring energy of hadronic showers comes from the fluctuation of EM fraction of a shower, f_em
- f_em can be measured by implementing two different channels with different h/e response in a calorimeter

- Excellent energy resolution for hadrons can be achieved by measuring f_em and correcting the measurement event-by-event
- Dual-readout fiber-sampling calorimeter is a key element of the IDEA detector concepts

Dual-readout calorimeter

Dual-readout fiber-sampling calorimeter

- Longitudinally unsegmented fiber-sampling calorimeter
 - \rightarrow measure both EM & hadronic components simultaneously
 - \rightarrow fine unit structure with a high granularity
- Projective geometry with a uniform sampling fraction
 - \rightarrow more fibers in the rear than the front

Dual-readout calorimeter

SiPM emulation

Simulating SiPM response with SimSiPM

- SiPM is a major candidate for the photodetector
 - \rightarrow SiPM simulation library [link] is developed
- Parameterized inputs from the datasheet

 \rightarrow Dark counts, crosstalk, afterpulses, saturation, noise, ...

Minimal dependency – based on the standalone c++/python

Nov 9, 2021

Migration to Key4hep

Key4hep

- Common SW framework for all future HEP experiments (ILC, CLIC, FCC and CEPC) proposed at 2019 workshop [link]
- Encompass typical needs of HEP experiments, provide common turnkey stack covering different domains
- Dual-readout calorimeter successfully migrated to Key4hep
 - \rightarrow shares framework core, EDM, detector description with CEPCSW

Key4hep

Migration to Key4hep

- Dual-readout calorimete

Energy resolution

Estimation of energy resolution with GEANT4

- GEANT4 shows excellent energy resolution for both EM & hadronic showers
 → details presented several times in the past workshops [2019][2020-1][2020-2]
- Moving forward to demonstrate energy resolution with the beam test data
 → details presented at the Monday session [link]

Particle identification

Image-based (CNN) vs Point-cloud (PointNet) method

- Imaged-based data consists of pixelated energy deposits of 3×3 towers (1 tower = 56×56 fibers)
- Point-cloud data represents energy deposits as (points) = $(\eta, \phi, depths) \otimes (fiber type) \otimes (Energy)$

• Particle gun simulations are used as the training set with the uniform energy distribution (10 GeV < E < 100 GeV)

^{*} depths = preprocessed timing (ToP)

Particle identification

Classification performance

- Calorimeter standalone identification performance
 - No tracker information
 - No magnetic field is applied
- Numbers show AUC of the classification between row vs column
 - \rightarrow Excellent $\pi 0$ identification against both EM & hadronic particles
 - \rightarrow Potential contribution to meson vs baryon (if combined with the tracker's dE/dx)

10

τidentification

with Dynamic Graph CNN (DGCNN)

- Conventional image-based data can be very sparse in e+e- collision
 → Point-cloud approach with timing information incorporated
- Representing a point-cloud as a graph
 - Inputs = $(\Delta \theta, \Delta \phi) \otimes (\text{SiPM's integral, ToA, ToP, ToT}) \otimes (\text{fiber type})$ $\tau \rightarrow \pi \pi^0 \pi^0 \nu$

(timing)

Vertices → points, Edges → connections between k-NN

11

Nov 9, 2021

Alternative approach – use state-of-the-art ML technique $Z > \tau^{\bar{\tau}}$

ViT is rapidly replacing CNN

τidentification

- Uses flattened image patches (no more convolution)
- Pre-training & fine-tuning (variable resolution)
- \rightarrow scalable image recognition & classification

with Vision Transformer (ViT)

12

Longitudinal shower shape

Shower shape & timing – SiPM waveform

- Unsegmented calorimeter fully depends on the timing to reconstruct longitudinal shower shape
- Is $dN/dt \rightarrow dE/dx$ possible?
 - \rightarrow very challenging due to many hidden layers
- A SiPM yields exponentially decaying waveform to 1 photon
- FFT can be used to mitigate exponential tail, while preserving time translation & amplitude information

Nov 9, 2021

14

Shower shape & timing – Dispersion

Longitudinal shower shape

- Waveform is unlikely a shower shape even after FFT processing
- Late-component of the timing is dominated by the modal dispersion
- Mitigate dispersions by using slower phase velocity for late-components

 \rightarrow Tune group velocity as a function of Δ t using EM shower

Longitudinal shower shape

Longitudinal shower depth & length

- Able to obtain linear correlation of both shower depth & length simultaneously
 - Depth shows good correlation between MC vs Reco
 - Length shows moderate correlation
 - \rightarrow remains of unmitigated shower head (mainly dispersion)
- Longitudinal shape with excellent lateral granularity → 3D reconstruction

Simulation setupTiming resolutionIdeal
(assume ~ O(10 ps))Sampling rate100 ps

3D reconstruction

Summary

Simulation & SW framework

- Dual-readout calorimeter has shown excellent performance with simulations through past years
- Migrated to Key4hep, allows easier integrated usages with the central SW framework

Particle identification

- Image classification with timing shows good discrimination between e-/γ, π0 and other hadrons
- Various methods are being tested to identify τ decays with great accuracy

Longitudinal & 3D reconstruction

- Developing novel ideas to exploit timing for longitudinal & 3D reconstruction
- Many exciting challenges are ahead of us...

Optical properties in simulation

SiPM emulation

EDM4hep

Sharing common EDM

- EDM4hep [link] is the common EDM shared by multiple future collider communities
- Support various use-cases motivated from different experiments

Calibration

Calibration using 20 GeV e-

- Measure Energy deposit, scintillation p.e. & Čerenkov p.e. at i-th tower (0th 91st)
- Energy can be expressed as a linear combination with simulations of 92 towers

 Uniform calibration constants as a function of the tower number

Nov 9, 2021

Vision Transformer

Transformer network

- Z→ττ events are clustered and 256x256 images are generated for each type of fibers
- ViT takes sequential patches of images as input

→ calculates attention values (similarity between hidden states of encoders & decoders) for each patch to other patches

Layer (type)	Output Shape	Param #	Connected to
input_1 (InputLayer)	[(None, 256, 256, 2)	0	
patches (Patches)	(None, None, 2048)	0	input_1[0][0]
patch_encoder (PatchEncoder)	(None, 64, 64)	135232	patches[0][0]
multi_head_attention (MultiHead	(None, 64, 64)	66368	patch_encoder[0][0] patch_encoder[0][0]
flatten (Flatten)	(None, 4096)	0	multi_head_attention[0][0]
dropout (Dropout)	(None, 4096)	0	flatten[0][0]
dense_1 (Dense)	(None, 1024)	4195328	dropout[0][0]
dropout_1 (Dropout)	(None, 1024)	0	dense_1[0][0]
dense_2 (Dense)	(None, 512)	524800	dropout_1[0][0]
dropout_2 (Dropout)	(None, 512)	0	dense_2[0][0]
dense_3 (Dense)	(None, 6)	3078	dropout_2[0][0]
Total params: 4,924,806 Trainable params: 4,924,806 Non-trainable params: 0			

Modal dispersion

Group velocity modeling

(ToA)

- Assign slower group velocity for the late-components at $t = t_0 + \Delta t$
- Apply tuning according to cumulative distribution of dE/dx & dN/dt with 20 GeV e-
 - → profile group velocity for every fiber by assuming the longitudinal shape (EM shower template)

