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Introduction Motivation

Electroweak Precision Physics

Experiment Theory Main source

uncertainty

MW [MeV] 80385± 15 4 N2
fα

3, Nfα
2αs

sin2 θl
eff [10−5] 23153± 16 4.5 N2

fα
3, Nfα

2αs

ΓZ [MeV] 2495.2± 2.3 0.4 N2
fα

3, Nfα
2αs, αα2

s

σ0
had[pb] 41540± 37 6 N2

fα
3, Nfα

2αs

Rb = Γb
Z/Γhad

Z [10−5] 21629± 66 15 N2
fα

3, Nfα
2αs

The number of Z-bonos collected at LEP is 1.7× 107

Many pseudo observables are determined with high precision
Present theoretical predictions (at least one order of magnitude
better) are accurate enough to fullfill experimental demands
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Introduction Motivation

Overview Experiment Future

Experiment uncertainty Theory uncertainty

ILC CEPC FCC-ee Current Future

MW [MeV] 3-4 3 1 4 1

sin2 θl
eff [10−5] 1 2.3 0.6 4.5 1.5

ΓZ [MeV] 0.8 0.5 0.1 0.4 0.2

Rb[10−5] 14 17 6 15 7

The concepts for the new experiments will have new demands to the
theoreticle predictions
The projection to the theory errors in the future assumes that the
missing corrections αα2

s , N2
fα

3, Nfα
2αs will become available

Theoretical computations are universal
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Introduction Computational difficulties

Samples of three-loop Feynman integrals

We project all Feynman integrals to scalar integrals
We need to compute all Feynman integrals only up to the finite order
in ε = (4− d)/2, d the space time dimension
At the end we want to make sure we are able to compute all
three-loop Feynman integrals appearing in e.g. the Zb̄b vertex
numerically with at least eight significant digits of accuracy in
physical kinematic regions
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Introduction Computational difficulties

Grading the difficulty of a computation

The integrals depend on up to four dimensionless parameters{
M2

H

M2
Z

,
M2

W

M2
Z

,
m2

t

M2
Z

,
(s+ iδ)
M2

Z

}
|s=M2

Z
(1)

Many of them contain ultraviolet and infrared singularities, even
though the divergences cancel in the final result
Computations involve O(100) master integrals
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Introduction Computational difficulties

Numerical Methods

Many formal successfull studies are available on the market.
Loop tree duality [Capatti, Hirschi, Pelloni, Ruijl, 2021]

Unitarity cut techniques [Abreu, Ita, Page,Tschernow,2021]

pySecDec approach [Long Chen, Heinrich, Jones, Kerner, Klappert, Schlenk, 2021]

Auxiliary mass flow [Brønnum-Hansen, Melnikov, Quarroz, Chen-YuWang, 2021]

Solving a system of differential equations numerically [Lee, Smirnov, Smirnov,

2018], [Mandal, Zhao, 2019], [Moriello, 2019], [Bonciani, Del Duca, Frellesvig, Henn, Hidding, Maestri, Moriello,

Salvatori, Smirnov, 2019], [Hidding, 2020], [Abreu, Ita, Moriello, Page, Tschernow, Zeng 2020]

For the full automation some glue is missing.
We demonstrate one possible full automation of the differential equations
method approach.

7 / 19



Introduction Feynman integral

Feynman integral

T (a1, . . . , aN ) =
∫ ( L∏

i=1
dd`i

)
1

P a1
1 P a2

2 · · ·P
aN
N

, N = L

2 (L+ 1) + LE

(2)

Pj = q2
j −m2

j , j = 1, . . . , N , are the inverse propagators
The momenta qj are linear combinations of the loop momenta `i,
i = 1, . . . , L for an L-loop integral, and external momenta pk,
k = 1, . . . , E for E + 1 external legs
The mj are the propagator masses
The aj are the (integer) propagator powers
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Introduction Feynman integral

Differential Equations

Each family of Feynman integrals T (a1, . . . , aN ) may be charcterized
through a system of differential equations [Kotikov, 1991], [Remiddi, 1997][Gehrmann,

Remiddi, 2000]

∂si
~f = Msi(si, ε)~f (3)

and a set of master integrals ~f
We take derivatives in kinematic invariants and masses denoted as si

in ~f
We express these derivatives again as a linear combination in terms of
the same master integrals with the help of integration-by-parts
identities [Chetyrkin, Tkachov, 1981]

The difficult part is to cast a physics problem in the form of Eq. (3). If this
is done successfully, we have powerful tools to solve the physics problem.
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Caesar: blueprint for numerical evaluation of Feynman integrals

Caesar: blueprint for numerical evaluation of Feynman
integrals

Developers team: Martijn Hidding and me.
Basic idea: Caesar has an interface to Kira, Reduze 2 [Von Manteuffel, Studerus,

2012], pySecDec [Borowka et al., 2018] and DiffExp [Martijn Hidding, 2021].
Kira - the backbone / major bottleneck of the Caesar project - solves
linear system of equations
Reduze 2 - finds candidates for a finite basis of master integrals
pySecDec - computes these master integrals in Euclidean regions -
boundary terms for the system of differential equations
DiffExp - transports the Euclidean point to an arbitrary physical point
Error estimate: repeat the chain of tools for different Euclidean point
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Caesar: blueprint for numerical evaluation of Feynman integrals

One Possible Application of Caesar

All master integrals fi(...) are finite integrals (Reduze)
Master integrals fi(...) are evaluated numerically in Euclidean regions
(pySecDec)
System of differential equations is generated with (Kira)
Use series expansion of the system of differential equations to
transport from the Eucliden points to Minkowskien physical regions
(DiffExp) 11 / 19



Benchmark v3t181

Caesar: Integralfamily v3t181

In Euclidean regions (s,M2
W ,m2

t )=(-2,4,16)
-> v3t181d=4−2ε[1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0] =

0.133952666444160183902749812 with 25 significant digits
At the present stage of the project this high accuracy was achieved
semi-automatic :)
5 times longer run time compared to an 8 digit resullt (see next slide)
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Benchmark v3t181

Caesar: Integralfamily v3t181

In physical regions (s,M2
W ,m2

t )=(1,( 401925
4559382)2, (433000

227969)2)
-> v3t181d=4−2ε[1, 1, 1, 1, 1, 1, 1, 1, 1, -3, 0, 0] =

2.00000000000[7]
ε3

+ 9.8700393436[4]1 +18.8495559213[6]2 i
ε2

− 26.507336797[7]7 −41.196707081[0]4 i
ε

+(2.29574523[1]2 + 201.06880207[3]5 i) +O (ε)
Fully automated following the blueprint Caesar
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Benchmark v3t181

Few comments about v3t181

The integral v3t181 has 77 master integrals all in different
dimensions, d=4,6,8.
Automatic resale of master integrals is implemented to meet the
requirement that the matrix of system of differential equations is
finite in the ε series expansion. The largest power is ε−5

The matrix is ∼3 MB big before expanding in ε
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Benchmark taNp1

Caesar: Integralfamily taNp1

taNp14−2ε =
∫

[(q1)2]2[(q2 + p1)2]
[(p1 + q1)2][(q1 − q2)2 − m2

t ][(p1 + q1 − q2)2 − m2
t ]

dDq1
iπD/2

dDq2
iπD/2

dDq3
iπD/2

[(q2)2 − m2
t ][(q1 − q3)2 − m2

t ][(q2 − q3)2][(q3)2 − m2
t ][(p1 + q3)2 − m2

t ]

In physical regions (s, m2
t )=(1, ( 433000

227969 )2)
-> taNp1d=4−2ε =

8.27490485938[1]/ε3 − 34.98692810459[0]/ε2
+102.43077689369[7]/ε− 253.50723525334[2] +O (ε)

Fully automated following the blueprint Caesar
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Benchmark Bhabha

Caesar: Integralfamily Bhabha

In physical regions (s, t,m2
1,m

2
2)=(2,5,4,16)

-> bhabhad=6−2ε[1, 2, 1, 2, 1, 1, 1, 0, 0] =
(0.0002973066815 + 0.001542581913 i)
−(0.002805345908 − 0.003106827180 i) ε+O

(
ε2
)

Fully automated following the blueprint Caesar
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Benchmark Bhabha

Caesar: Iterative Approach

Generate a system of differential equations for just one variable s1
and set all other kinematic variables to numeric values
si = ni(rational number), i 6= 1
The integration-by-parts reductions depend only on s1 and d
Evaluate all master integrals in a comfortable point numerically with
pySecDec
Transport the boundary terms with DiffExp to some useful value u1 in
the physical regions for s1
Generate a system of differential equations for the next variable s2
and set all other kinematic variables to numeric values
si = ni(rational number), i 6= 1, 2 and s1 = u1(physical region)
We skip the evaluation with pySecDec, since we know the new
boundary terms from the last DiffExp call
Transport the boundary terms with DiffExp to the next useful physical
value u2 for s2
Continue this pattern until all si are in physical regions 17 / 19



Summary

Outlook

Get a basis where the matrix of the system of differential equations is
linear in ε
-> DiffExp does order of magnitudes faster transport of the boundary

terms
Implement automated search for Euclidean regions
Iterative application of the blueprint Caesar
Generation of a whole grid for the function evaluation
Kira supports deformed propagators - have to check the application of
Caesar also here
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Summary

Conclusions

The first physics goals are already in next month reach
Important is the knowledge transfer and to get people motivated to
engineer other methods for practical applications
Strong computing resources are needed not only for the final product
but also for the development of the tools.
Without spending significant effort on simplification of the basis, we
can numerically solve the differential equations of non-trivial 3-loop
Feynman integrals.
By choosing the basis representatives to be finite integrals, we can
obtain precise numerical boundary conditions in the Euclidean region
using pySecDec.
We find that the precision of the boundary conditions in the
Euclidean region carries over to the physical region.
The process can be fully automated.
The list of applications possible in physics with Caesar is growing.
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