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Introduction Motivation

Electroweak Precision Physics

Experiment Theory Main source

uncertainty

My [MeV] 80385+ 15 4 N7a?, Nyatay
sin? 0.4 [107°] 23153+ 16 4.5 N7a®, Nyotas
I'z[MeV] 2495.2 +£2.3 0.4 N7a?, Nyaas, aag
oy 1[pb] 41540 £37 6 N]%oz?’, N oo
Ry =T%/T%d[107°] 216294+ 66 15 N7a®, NyaPag

@ The number of Z-bonos collected at LEP is 1.7 x 107
@ Many pseudo observables are determined with high precision
@ Present theoretical predictions (at least one order of magnitude

better) are accurate enough to fullfill experimental demands
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Introduction Motivation

Overview Experiment Future

Experiment uncertainty Theory uncertainty

ILC CEPC FCC-ee Current Future

My [MeV] 3-4 3 1 4 1
sin? 01 [107°] 1 2.3 0.6 4.5 1.5
I'z[MeV] 0.8 0.5 0.1 0.4 0.2
Ry[1077] 14 17 6 15 7

@ The concepts for the new experiments will have new demands to the
theoreticle predictions

@ The projection to the theory errors in the future assumes that the
missing corrections ozozg, NJ%OzS, Nfa2as will become available

@ T heoretical computations are universal
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Introduction Computational difficulties

Samples of three-loop Feynman integrals

@ We project all Feynman integrals to scalar integrals

@ We need to compute all Feynman integrals only up to the finite order
ine=(4—d)/2, d the space time dimension

@ At the end we want to make sure we are able to compute all
three-loop Feynman integrals appearing in e.g. the Zbb vertex

numerically with at least eight significant digits of accuracy in
physical kinematic regions
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Introduction Computational difficulties

Grading the difficulty of a computation

@ The integrals depend on up to four dimensionless parameters

M% Ma m? (s+1id)
20 12 Ar2 5 | 5= M2 (1)
Mz My Mz My d

@ Many of them contain ultraviolet and infrared singularities, even
though the divergences cancel in the final result
@ Computations involve O(100) master integrals
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Introduction Computational difficulties

Numerical Methods

Many formal successfull studies are available on the market.

@ Loop tree duality [capatti, Hirschi, Pelloni, Ruiji, 2021]

Unitarity cut techniques (abreu, ita, Page Tschernow,2021]

pySecDec approach [Long Chen, Heinrich, Jones, Kerner, Klappert, Schlenk, 2021]

Auxiliary mass flow (Brgnnum-Hansen, Melnikov, Quarroz, Chen-YuWang, 2021]

Solving a system of differential equations numerically [Lee, Smimov, Smimov,

2018], [Mandal, Zhao, 2019], [Moriello, 2019], [Bonciani, Del Duca, Frellesvig, Henn, Hidding, Maestri, Moriello,
Salvatori, Smirnov, 2019], [Hidding, 2020], [Abreu, Ita, Moriello, Page, Tschernow, Zeng 2020]
@ For the full automation some glue is missing.

We demonstrate one possible full automation of the differential equations
method approach.
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Introduction Feynman integral

Feynman integral

®© Pj=qj—m3, j=1,...,N, are the inverse propagators
@ The momenta g; are linear combinations of the loop momenta /;,
i =1,...,L for an L-loop integral, and external momenta py,

k=1,...,FE for £+ 1 external legs
@ The m; are the propagator masses
@ The a; are the (integer) propagator powers
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Introduction Feynman integral

Differential Equations

e Each family of Feynman integrals T'(a1,...,ay) may be charcterized
through d SyStem of differential equatiOnS [Kotikov, 1991], [Remiddi, 1997][Gehrmann,

Remiddi, 2000]

851-]?: MS,L.(SZ',G)]F (3)

and a set of master integrals f
@ \We take derivatives in kinematic invariants and masses denoted as s;

in f

@ We express these derivatives again as a linear combination in terms of
the same master integrals with the help of integration-by-parts
identities [Chetyrkin, Tkachov, 1981]

The difficult part is to cast a physics problem in the form of Eq. (3). If this
is done successfully, we have powerful tools to solve the physics problem.
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Caesar: blueprint for numerical evaluation of Feynman integrals

Caesar: blueprint for numerical evaluation of Feynman
integrals

@ Developers team: Martijn Hidding and me.

@ Basic idea: Caesar has an interface to Kira, Reduze 2 von Manteuffel, Studerus,
2012], pySecDec [Borowka et al., 2018] and DIffEXpP Martijn Hidding, 2021].

e Kira - the backbone / major bottleneck of the Caesar project - solves
linear system of equations

@ Reduze 2 - finds candidates for a finite basis of master integrals

@ pySecDec - computes these master integrals in Euclidean regions -
boundary terms for the system of differential equations

@ DiffExp - transports the Euclidean point to an arbitrary physical point

@ Error estimate: repeat the chain of tools for different Euclidean point
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Caesar: blueprint for numerical evaluation of Feynman integrals

One Possible Application of Caesar
A s mi )

Transport
with

Euclidean Minkowski

@ All master integrals f;(...) are finite integrals (Reduze)

@ Master integrals f;(...) are evaluated numerically in Euclidean regions
(pySecDec)

e System of differential equations is generated with (Kira)

@ Use series expansion of the system of differential equations to

transport from the Eucliden points to Minkowskien physical regions
(DiffExp) 11 /10



Benchmark v3t181

Caesar: Integraltamily v3t181

o In Euclidean regions (s, M3,, m?)=(-2,4,16)
-> v3t1814=4-2¢1,1,1,1,0,1,1,1,1,0,0,0] =
0.133952666444160183902749812 with 25 significant digits

@ At the present stage of the project this high accuracy was achieved

semi-automatic :)
@ 5 times longer run time compared to an 8 digit resullt (see next slide)
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Benchmark v3t181

Caesar: Integralfamily v3t181

M2 _

B

%

o In physical regions (s, M3, m?)=(1,(;0t555)?, (552009)%)
-> v3t1819=4-2¢[1,1,1,1,1,1,1,1,1,-3,0,0] =

2.00000000000]7]
3

€
9.8700393436[4]1 +18.8495559213[6]2
2

_|_
€
26.507336797[7]7 —41.196707081[0]4 i

€

+(2.29574523[1]2 + 201.06880207(3]5 i) + O (e)
@ Fully automated following the blueprint Caesar
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Benchmark v3t181

Few comments about v3t181

@ The integral v3t181 has 77 master integrals all in different
dimensions, d=4,6,8.

@ Automatic resale of master integrals is implemented to meet the
requirement that the matrix of system of differential equations is
finite in the € series expansion. The largest power is €

@ The matrix is ~3 MB big before expanding in ¢
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Benchmark  taNpl

Caesar: Integralfamily taNpl

[(q1)?[(g2 + p1)?]

taNpl™™ ™ = / [(p1 + q1)?][(q1 — q2)2 — m?][(p1 + q1 — q2)%2 — m?]

dPq1 dPqs  dPgs
,L',n.D/Q ,L',n.D/Q ,L',n.D/Q

[(g2)? — mZ][(q1 — g3)? — m?][(g2 — ¢3)?][(g3)? — m?][(p1 + ¢3)? — m7]

433000 \2
227969) )

@ In physical regions (s, m7)=(1, (
-> taNpld=4-2¢ =
8.27490485938[1] /€> — 34.98692810459[0] /€

+102.43077689369(7] /e — 253.50723525334[2] + O (¢)

@ Fully automated following the blueprint Caesar
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Benchmark Bhabha

Caesar: Integralfamily Bhabha

m, m,

e In physical regions (s,t,m?, m3)=(2,5,4,16)
-> bhabha?=%72¢[1,2,1,2,1,1,1,0,0] =
(0.0002973066815 + 0.001542581913 1)
—(0.002805345908 — 0.003106827180 ) e+0O (62)

@ Fully automated following the blueprint Caesar
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Benchmark Bhabha

Caesar: lterative Approach

@ Generate a system of differential equations for just one variable s;
and set all other kinematic variables to numeric values
s; = n;(rational number), i # 1

@ The integration-by-parts reductions depend only on sy and d

@ Evaluate all master integrals in a comfortable point numerically with
pySecDec

@ Transport the boundary terms with DiffExp to some useful value u; in
the physical regions for sy

@ Generate a system of differential equations for the next variable so
and set all other kinematic variables to numeric values
s; = n;(rational number), ¢ £ 1,2 and s; = u(physical region)

@ We skip the evaluation with pySecDec, since we know the new
boundary terms from the last DiffExp call

@ Transport the boundary terms with DiffExp to the next useful physical
value w9 for so

@ Continue this pattern until all s; are in physical regions 1710



Summary

Outlook

@ Get a basis where the matrix of the system of differential equations is
linear in €

-> DiffExp does order of magnitudes faster transport of the boundary
terms
@ Implement automated search for Euclidean regions
@ lterative application of the blueprint Caesar
@ Generation of a whole grid for the function evaluation
@ Kira supports deformed propagators - have to check the application of
Caesar also here
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Summary

Conclusions

@ The first physics goals are already in next month reach

@ Important is the knowledge transfer and to get people motivated to
engineer other methods for practical applications

@ Strong computing resources are needed not only for the final product
but also for the development of the tools.

@ Without spending significant effort on simplification of the basis, we
can numerically solve the differential equations of non-trivial 3-loop
Feynman integrals.

@ By choosing the basis representatives to be finite integrals, we can
obtain precise numerical boundary conditions in the Euclidean region
using pySecDec.

@ We find that the precision of the boundary conditions in the
Euclidean region carries over to the physical region.

@ The process can be fully automated.

@ The list of applications possible in physics with Caesar is growing.
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