Arbor in CEPCSW

International Workshop on the High Energy Circular Electron Positron Collider 2021/11/11

中國科學院為能物現為完備 Institute of High Energy Physics Chinese Academy of Sciences

By Dan YU

Plan

- CEPCSW Overview
- Arbor PFA: Idea & Migration
- Performance & Validation Tools

- The CEPCSoft was used to produce results in CEPC-CDR
- It is developed from ILCSoft and takes ILCSoft data format & management
- In 2019, Key4HEP: Software components sharing between different experiments (CEPC, ILC, FCC, CLIC, SCTF)
- CEPCSW: based on Key4HEP and Gaudi framework, integrated with CEPC components

CEPCSoft

Principle: reconstructing all the final state particles - different subdetectors suitable for different particles

- final physics objects recognized with high efficiency and purity
- jets: 63% charged + 27%photon + 10% neutral hadron

Arbor

- The spatial configuration of a particle shower follows a tree configuration
- Provides precisely reconstructed final state particles for further analysis
- All the CEPC FullSim analysis was done with Arbor till now

Baseline Performance

- Acceptance: $|\cos(\theta)| < 099$
- Tracks:
 - Pt threshold, ~ 100 MeV
 - δp/p ~ o(0.1%)
- Photons:
 - Energy threshold, ~ 100 MeV
 - δE/E: 3 I 5%/sqrt(E)
- Pi-Kaon separation: 3-sigma
- BMR: 3.7%
- Missing Energy: Consistent with BMR.

- Lepton inside jets: eff*purity @ Z→qq ~ 90% (energy > 3 GeV)
- Tau: eff*purity @ WW→tauvqq: 70%, mis id from jet fragments ~ o(1%)
- Pi-0: rec. eff*purity @ Z→qq > 60% @ 5GeV
- Reconstruction of simple combinations: Ks/Lambda/D with all tracks @ Z→qq: 60/75 – 80/85%
- B-tagging: eff*purity @ Z→qq: 70%
- C-tagging: eff*purity @ $Z \rightarrow qq$: 40%
- Jet charge: eff*(1-2ω)2 ~ 15%/30% @
 Z→bb/cc

*Detector PFA Standalone package High level objects CEPCWS2021

BMR

Higgs Boson Mass Resolution in nnHgg channel, shows the separation power of bosons

- Physics requirement: <4%
- To quantify the detector/PFA performance
- standard expression of overall performance in CEPC
 - including effects of clustering, tracking, energy scale, etc...

*Without events with ISR photons / neutrinos from Higgs / jets shooting to the endcaps

BMR requirement

- To reduce Z boson backgrounds (with similar FSP as signal):
 - current: 3.7%
 - requirement: 4%

Migration to CEPCSW

- The ArborPFA is migrated to CEPCSW as a module
- <u>https://github.com/cepc/CEPCSW/tree/master/Reconstruction/</u> <u>PFA/Arbor</u>
- The new detector designs optimization needs Arbor
 - Input: Tracks & Digitized CaloHits
 - Parameters: Thresholds

Performance in CEPCSW

- A whole software chain test of CEPCSW, Sim+Rec
- The BMR in CEPCSW is 3.8%
- Lower level & high level validation still needed

Other Performance: Photon Separation

- Separation power: the efficiency to correctly reconstruct the two photons
 - ECAL design
 - PFA effects
 - energy reconstruction
 - merging
 - spitting
- Challenging for pi0 reconstruction

Other Performance: Lepton Identification

- Input: charged particle from Arbor (both track & cluster)
- Depends on:
 - Cluster shape & energy
 - dE/dx resolution
- Important for flavor

Other Performance: Tau reconstruction

- Double cone base algorithm
- Depends on:
 - Separation
 - Energy measurements
- H->tautau analysis

Other Performance: Benchmarks

- Specific channels for different physics objects
- Input for global fitting

To do list

- Before BMR:
 - Cluster separation
 - Tracking performance
 - Photon reconstruction
 - K/pi separation
- After BMR:
 - Lepton Identification & Validation
 - Tau Reconstruction & Validation
 - Jet Clustering
 - Flavor Tag

Summary & Prospect

- The Arbor PFA has been migrated to CEPCSW, the full simulation softwares are ready
 - Validation of BMR ~ 3.8% in CEPCSW, same as in CEPC CDR
 - Can be used in the 4th Det optimization
- More packages is to be integrated
 - Lepton/Tau ID
 - Jet Clustering & Flavor Tag
- Before the analyzers to use it
 - A number of validation tools should be prepared -> time & manpower

Thank you!

Tracking Performance

K-pi Separation

Flavor Tagging

22