Status and progress of TPC technology R&D for e⁺e⁻ collider

Huirong Qi

ZhiYang Yuan, Yue Chang, Liwen Yu, Wei Liu, Jian Zhang, Zhi Deng, Yulan Li Hui Gong and some contributions from LCTPC collaboration

> Institute of High Energy Physics, CAS Tsinghua University

2021 International Workshop on the High Energy Circular Electron Positron Collider November 8-12, Beijing

Outline

Physics motivation
TPC technology R&D
Some related TPC R&D
Summary

TPC as key roles@ Future e⁺e⁻ Colliders

Beam parameters	ILC		CLIC		FCC-ee		CepC			
Energy(TeV)	0.25	0.5	0.38	1.5	3	0.091	0.24	0.36	0.091	0.24
Luminosity (x 10 ³⁴ cm ⁻² s ⁻¹) per IP	1.35	1.8	1.5	3.7	5.9	230	8.5	1.7	32	1.5
Bunch train frequency (Hz)	5			50						
Bunch separation (ns)	554		0.5		20	994	3000	25	680	
Number of bunches / train - beam	1312		312	31	12	16640	393	48	12000	242

- 3 -

Gaseous Tracking Systems @ Future Colliders

Experiment / Timescale	Application Domain	Gas Detector Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements/ Remarks
CEPC TPC DETECTOR START: > 2030	e+e- Collider Tracking + dE/dx	MM, GEM (pads) InGrid (pixels)	Total area: ~ 2x10 m ² Single unit detect: up to 0.04 m ²	Max.rate@Z: 100 kHz/cm ² Spatial res.: ~100μm Time res.: ~ 100 ns dE/dx: <5%	 Higgs run Z pole run Continues readout Low IBF and dE/dx
ILC TPC DETECTOR: STARTt: > 2035	e+e- Collider Tracking + dE/dx	MM, GEM (pads) InGrid (pixels)	Total area: ~ 20 m ² Single unit detect: ~ 400 cm ² (pads) ~ 130 cm ² (pixels)	Max. rate: < 1 kHz Spatial res.: <150μm Time res.: ~ 15 ns dE/dx: <5%	Si + TPC Momentum resolution : dp/p < 9*10 ⁻⁵ 1/GeV Power-pulsing
FCC-ee and/or CEPC IDEA CENTRAL TRACKER START: >2030	e+e- Collider Tracking/ Triggering	He based Drift Chamber	Total volume: 50 m ³ Single unit detect: (12 m2 X 4 m)	Max. rate: < 25 kHz/cm ² Spatial res.: <100 µm Time res.: 1 ns Rad. Hard.: NA	Particle sepration with cluster counting at 2% level
SUPER-CHARM TAU FACTORY START: > 2025	e+e- Collider Main Tracker	Drift Chamber	Total volume: ~ 3.6 m ³	Max. rate: 1 kHz/cm ² Spatial res.: ~100 μm Time res.: ~ 100 ns Rad. Hard.: ~ 1 C/cm	
SUPER-CHARM TAU FACTORY START: > 2025	e+e- Collider Inner Tracker	Inner Tracker / (cylindrical µRWELL, or TPC / MPDG read.	Total area: ~ 2 - 4 m ² Single unit detect: 0.5 m ²	Max. rate: 50-100 kHz/cm ² Spatial res.: ~<100 μm Time res.: ~ 5 -10 ns Rad. Hard.: ~ 0.1-1 C/cm ²	Challenging mechanics & mat. budget < 1% X ₀
ELECTRON-ION COLLIDER (EIC) START: > 2025	Electron-Ion Collider Tracking	Barrel: cylindrical MM, μRWELL Endcap: GEM, MM, μRWELL	Total area: ~ 25 m²	Luminosity (e-p): 10 ³³ Spatial res.: ~ 50- 100 um Max. rate: ~ kHz/cm ²	Barrel technical challenges: low mass, large area Endcap: moderate technical challenges

TPC detector technology

Some advantages of TPC detector :

- Operation under 3 Tesla magnetic field
- Momentum resolution: ~10⁻⁴/GeV/c with TPC standalone
- Large number of 3D space points: ~220 along the diameter
- □ dE/dx resolution: <5%
- ~100 μm position resolution in rφ
 - ~60μm for zero drift, <100μm overall
 - Systematics precision (<20µm internal)
- **TPC material budget**
 - \Box <1X₀ including outer field cage
- Tracker efficiency: >97% for pT>1GeV
- **2-hit resolution in r\phi : ~2mm**
- Module design: ~200mm × 170mm
- Minimizes dead space between the modules: 1-2mm
- **Readout options: pad and pixel**

TPC detector concept

a 1 /

Momentum resolution ($B=3.51$)	$\delta(1/p_t \approx 10^{-1}/\text{GeV}/c)$
δ_{point} in $r\Phi$	<100 µm
δ_{point} in rz	0.4-1.4 mm
Inner radius	329 mm
Outer radius	1800 mm
Drift length	2350 mm
TPC material budget	$\approx 0.05X_0$ incl. field cage $< 0.25X_0$ for readout endcap
Pad pitch/no. padrows	$\approx 1 \text{ mm} \times (4 \sim 10 \text{ mm}) / \approx 200$
2-hit resolution	$\approx 2 \text{ mm}$
Efficiency	>97% for TPC only ($p_t > 1 GeV$) >99% all tracking ($p_t > 1 GeV$)

Motivation of spatial resolution (δ_x)

Motivation of Particle identification (dE/dx)

- **Simulation results from CEPC**
- **Scan of the baseline detector concept performance**
 - 3.2% dE/dx resolution
 - **50psTOF resolution**

Zhiyang Yuan and Manqi Ruan

Particle identification from the experiments

 $\sigma_{dE/dx} = \sigma_0 N_{hits}^{-k}$

Experiment	Readout	Points	Sample	p(GeV/c)	(<i>σ</i> _I / <i>I</i>) _М с	$(\sigma_l/l)_{exp}$
	Pad (<i>mm</i>)					
PEP-4 TPC	4	183	е	14.5	2.6%	3.5%
TOPAZ TPC	4	175	π	0.4-0.6	3.8%	4.5%
DELPHI TPC	4	192	π	0.4-0.6	5.4%	6.2%
ALEPH TPC	4	344	е	45.6	3.0%	4.4%
STAR TPC	12, 20	13,32	π	0.4-0.6	5.3%	6.8%
ALICE TPC	7.5, 10, 15	63,64,32	π	6.0	3.3%	5.0%
TPC for CEPC	1mm×6mm	220	K	5.0	3.1%	
	Pixel(µm)					
<u>GridPix</u> TPC for ILD	55×55	9500	е	2.5	/	4.1%

Status of TPC technology R&D

Goals:

- Operate TPC at high luminosity ($\mathcal{L} = 32 \times 1034$ cm-2 s-1) at Z pole run (~10 kHz)
- **•** No gating
- □ Maximal occupancy at TPC inner-most layer: ~10⁻⁵ (safe!)
- **Rough estimations for primary ionisation** \Rightarrow **distortions** < 10 µm (safe!)
- **D** Total ions in chamber: Gain × IBF per primary ionization
- **D** For Gain \times IBF < 5 distortions < 40 μ m(~50% of intrinsic resolution)
- **UV** laser mimic tracks without the beam to study the performance

TPC detector module@IHEP

- **Study with GEM-MM module**
 - New assembled module
 - Active area: 100mm × 100mm
 - **X-tube ray and 55Fe source**
 - Bulk-Micromegas assembled from Saclay
 - **Standard GEM from CERN**
 - Avalanche gap of MM:128μm
 - Transfer gap: 2mm
 - Drift length:2mm~200mm
 - pA current meter: Keithley 6517B
 - Current recording: Auto-record interface by LabView
 - **Standard Mesh: 400LPI**
 - High mesh: >508 LPI
 - Pixel option for the consideration

TPC detector module@IHEP

K_{IBF} (=IBF*Gain)

- Study with GEM-MM module
 - CEPC: keep IBF \times Gain $\leq 5@$ Gain/5000
 - When MPGD gas gain<2000, IBF × Gain ≤ 1
 - Studies with hybrid GEM+MM detectors
 - sPHENIX R&D with 2GEM+MMG
 - **USTC** with DMM
- **•** To be optimized:
 - Optimize IBF together with energy resolution/Gain
 - **Gas mixture**
 - Magnetic field (influence on IBF)
 - **Distortion corrections**

GEM-MM detector

Ongoing: Amplification structure R&D

Pixel TPC (double mesh?)	Triple or double GEMs	Resistive Micromegas	GEM+ Micromegas	Double meshes Micromegas
IHEP, Nikehf	KEK, DESY	Saclay	IHEP	USTC USTC NIM A 976 (2020) 164282 (also (1) NIM A 623 (2010) 94)
Pad size: 55um-150um square	Pad size: 1mm×6mm	Pad size: 1mm×6mm	Pad size: 1mm×6mm	Pad size: 1mm×6mm (If resistive layer)
Advantage for TPC: Low gain: 2000 IBF×Gain: 1-2	Advantage for TPC: Gain: 5000-6000 IBF×Gain: <10	Advantage for TPC: Gain: 5000-6000 IBF×Gain: <10	Advantage for TPC: Gain:5000-6000 IBF×Gain: <5	Advantage for TPC: High gain: 10^4 Gain: 5000-6000 IBF×Gain: 1-2
Electrons cluster size for FEE: About Ø200um	Electrons cluster size for FEE: About Ø5mm	Electrons cluster size for FEE: About Ø8mm	Electrons cluster size for FEE: About Ø6mm	Electrons cluster size for FEE: About Ø8mm
Integrated FEE in readout board Detector Gain: 2000	FEE gain: 20mV/fC Detector Gain: 5000- 6000	FEE gain: 20mV/fC Detector Gain: 5000- 6000	FEE gain: 20mV/fC Detector Gain: 5000- 6000	FEE gain: 20mV/fC Detector Gain: 5000-6000

Status of TPC prototype@IHEP

- Data taking and more analysis on going
- **Commissioning:** Huirong Qi, Zhiyang Yuan, Yue Chang, Yiming Cai, Yulan Li, Zhi Deng
- Data taking: the same, plus: Hongyu Zhang, Ye Wu

TPC prototype sketch

- Main parameters
 - □ Same test parameters in CEPC
 - Drift field=200V/cm
 - Relative gain: ≥2000
 - Readout pad(anode) is designed to 0V (Ground)
 - TPC detector system: Fieldcage+ Pads readout
 - Working mixture gas:
 - \Box Ar/CF₄/iC₄H₁₀=95/3/2
 - □ Same purity
 - Specific prototype parameters
 - Drift length: ~500mm
 - Active area: 200mm²
 - Integrated 266nm laser beam
 - MPGD detector as the readout
 - TPC cathode: -10kV
 - Readout Pads: 1280 channels

TPC prototype

Commission: Chamber/Fieldcage/UV laser/Readout

- □ GEM detector as the endplate with 200mm²
- Cylindrical flexible circuit board with 0.15mm thickness
- □ 500mm drift length with 20000V high voltage
- □ Integration of the 266nm UV laser tracks in the chamber

Electronics and DAQ

- Amplifier and FEE
 - CASAGEM chip
 - □ 16Chs/chip
 - 4chips/Board
 - Gain: 20mV/fC
 - □ Shape time: 100ns

DAQ

- **• FPGA+ADC**
- □ 4 module/board
- 64Chs/module
- □ Sample: 40MHz
- **1280chs**

FEE Electronics and DAQ setup photos

Laser tracks in chamber@T2K gas

- □ Same of working gas@T2K, same of high voltage, same of test conditions
- □ Different of GEMs@ 320V
- **Double GEMs without any discharge**

Space resolution at the different drift length

- 18 -

Spatial resolution correction

Laser track correction @180V/cm@380mm

	data <u>w.o</u>	Simulation	+Q corr.	+Q+E corr.
Spatial resolution (<i>µm</i>)	184.83	$\frac{D_T}{\sqrt[]{[Z_{Drift})}}{\sqrt[]{[N_{eff})}} = 113.00$	144.60	130.52

Spatial resolution along the drift length with correction - 19 -

PID analysis using UV laser tracks

- □ dE/dx resolution achieved with pseudo-tracks of various lengths
- Comparison of simulation and experimental dE/dx
- □ Pseudo-tracks with 220 layers and dE/dx can reach to $3.36 \pm 0.26\%$

Conclusion: 266nm UV laser can work well when it can be as the online mimic tracks.

Some related TPC R&D

Goals:

- **D** Different size of TPC modules production
- **Low power consumption FEE ASIC chip R&D**
- **Some other readout options for TPC prototype**
- **Collaboration of TPC technology in international LCTPC for e⁺e⁻ collider**

Start of Micromegas detector production in 2021

- >50m² yellow light production lab
- Some samples of the detector module successfully were assembled in our lab(200mm²)
- The different active area of the detector could be prepared, and the maximum size could be more than 1000mm
- The gain test of the detector were fine at T2K/Ar:CO₂ mixture gases

Low power ASIC chip R&D

- The floor plan in layout :
- The die size of 1950 μm x 2160 μm
- · Analog Front-End , SPI, SAR ADC, LVDS driver are supplied by separate power
- · The ASIC have been taped out in November, 2019 and is being evaluated

LVDS driver

Layout of ASIC chip

ASIC chip for TPC readout have been developed

- The power consumption is 2.33 mW/channel
 - \square P_{AFE} = 1.43 mW/channel
 - \square P_{ADC} = 0.9 mW/channel @ 40M/s
- ENC =852e @Cm = 2pF, gain =10mV/fC and can be reduced to 474e using digital trapezoidal filter

See Liu Wei's talk

Test of the signals _23 -

New electronics commissioning

A 16 channels low power consumption readout
 ASIC chip for TPC readout have been developed

- □ The power consumption is 2.33 mW/channel
 - $\square P_{AFE} = 1.43 \text{ mW/channel}$
 - \square P_{ADC} = 0.9 mW/channel @ 40M/s
- ENC =852e @Cm = 2pF, gain =10 mV/fC and can be reduced to 474e using digital trapezoidal filter

Detector and ASIC

• Future studies

- More ASIC evaluations: Higher sampling rate, more detailed noise test, test with detectors ...
- Low power digital filter and data compression in FPGA/ASIC
- □ 2-phase CO₂ cooling a valid candidate
- D 3D printing complex structures (CEA-Saclay)

Motivation for the pixelated TPC See Peter's talk

- Improved dE/dx by cluster counting
- Improved measurement for the low angle tracks
- Improved double track separation
- Much reduced hodoscope effect
 - Near to the endplate
 - Decreased the spatial resolution
- Lower occupancy in the high rate environments
- Fully digital readout

Plans of TPC R&D for e⁺e⁻ collider

- IHEP will continued to involve in TPC prototype test using 266nm UV
- TPC detector assembled and commissioned with the low power consumption ASIC chip
- □ More contributions will be involve in LCTPC for e⁺e⁻ collider

Summary

- Some motivations of TPC detector for the circular collider at high luminosity listed.
- Some update results of TPC module have been studies, it can effectively reduce ions at the low gain without the space charge and the discharge.
- Some update results of TPC prototype have been studies, the prototype is working well, and the results indicated that 266nm UV laser beams will be very useful.
- The detector module will assembled and commissioned with the low power consumption ASIC chip.
- More collaboration will be continued for e⁺e⁻ collider.

Thanks for your attention.