Probing New Physics with off Z-pole Fermion-pair Production at CEPC

1. Amherst Center for Fundamental Interactions (ACFI), University of Massachusetts Amherst

in collaboration with Shao-Feng Ge² & Michael J. Ramsey-Musolf^{1,2} 2. Tsung-Dao Lee Institute & Shanghai Jiao Tong Univ.

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

Jia Zhou¹

Nov. 8, 2021

O Cross Section and Asymmetry

O BSM Sensitivities — Statistics & Systematics

O Conclusion

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

Nov. 8, 2021 2

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

O LEP₂ experiment provides abundance of off Z pole measurements (averages of cross sections and FB asymmetries for $e^+e^- \rightarrow f\bar{f}$ above Z pole) that constrain the

dimension six (dim-6) four-fermion (4f) operators at the cutoff scale $\Lambda \sim 10$ TeV.

D6 operators in interference term as higher order contribution

 $d\sigma = d\sigma_{SM} + d\sigma_I + \dots$

J.Zhou (UMass Amherst)

O LEP₂ experiment provides abundance of off Z pole measurements (averages of cross sections and FB asymmetries for $e^+e^- \rightarrow f\bar{f}$ above Z pole) that constrain the

dimension six (dim-6) four-fermion (4f) operators at the cutoff scale $\Lambda \sim 10$ TeV.

CEPC Intl. Workshop, Nanjing

Nov. 8, 2021 3

sections and FB asymmetries for $e^+e^- \rightarrow f\bar{f}$ above Z pole) that constrain the

D6 operators in interference term as higher order contribution

 $d\sigma = d\sigma_{SM} + d\sigma_I + \dots$

J.Zhou (UMass Amherst)

O LEP₂ experiment provides abundance of off Z pole measurements (averages of cross

dimension six (dim-6) four-fermion (4f) operators at the cutoff scale $\Lambda \sim 10$ TeV.

e.g., $\Lambda^{\pm} \sim \mathcal{O}(20)$ TeV in VV^{\pm} model for dilepton production LEP Electroweak Working Group, hep-ex/0612034

O LEP₂ experiment provides abundance of off Z pole measurements (averages of cross sections and FB asymmetries for $e^+e^- \rightarrow f\bar{f}$ above Z pole) that constrain the dimension six (dim-6) four-fermion (4f) operators at the cutoff scale $\Lambda \sim 10$ TeV.

D6 operators in interference term as higher order contribution $d\sigma = d\sigma_{SM} + d\sigma_I + \dots$

O Off Z pole physics has not yet been studied at CEPC. In the same framework as done

at LEP₂, it is interesting to see what cutoff scale can CEPC access for the dim-6 4f

operators.

J.Zhou (UMass Amherst)

e.g., $\Lambda^{\pm} \sim \mathcal{O}(20)$ TeV in VV^{\pm} model for dilepton production LEP Electroweak Working Group, hep-ex/0612034

•Cross Section of process $e^+e^- \rightarrow ff$ involving D6 4f OP

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

Nov. 8, 2021

•<u>Cross Section of process $e^+e^- \rightarrow ff$ involving D6 4f OP</u>

J.Zhou (UMass Amherst)

 $d\sigma = d\sigma_{SM} + d\sigma_I + \dots$

CEPC Intl. Workshop, Nanjing

Nov. 8, 2021

•<u>Cross Section of process $e^+e^- \rightarrow ff$ involving D6 4f OP</u> $d\sigma = d\sigma_{SM} + d\sigma_L + \dots$

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

Nov. 8, 2021

•<u>Cross Section of process $e^+e^- \rightarrow ff$ involving D6 4f OP</u>

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

Nov. 8, 2021

•<u>Cross Section of process $e^+e^- \rightarrow ff$ involving D6 4f OP</u>

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

Nov. 8, 2021 4

•<u>Cross Section of process $e^+e^- \rightarrow ff$ involving D6 4f OP</u> $\mathscr{L} = \mathscr{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \cdot O_i$

Xsec asymmetry off Z pole enhances due to the interference terms: $M_{SM}^{\gamma} \times M_{SM}^{Z^*}$, $M_{O_i} \times M_{SM}^{Z^*}$, where the Z propagator has power one and thus the contribution flips sign above and below the Z pole. (Other interference terms also give rise to asymmetry but much less since no flipping of sign)

J.Zhou (UMass Amherst)

• Proposed Off Z Pole Asymmetry Measurements

OAsymmetries measured in the vicinity of Z pole (above+ & below-)

J.Zhou (UMass Amherst)

• Proposed Off Z Pole Asymmetry Measurements

- OAsymmetries measured in the vicinity of Z pole (above + & below-)
 - Two-sided cross section asymmetries: A 1)

- 2)
- Two-sided version of asymmetries in 2): 3)

J.Zhou (UMass Amherst)

$$\Lambda_{\sigma} = \frac{\sigma(M_Z + \Delta_+) - \sigma(M_Z - \Delta_-)}{\sigma(M_Z + \Delta_+) + \sigma(M_Z - \Delta_-)}$$

One-sided electron polarization and forward-backward (FB) asymmetries: $A_{\text{pol}}^{(1)\pm}$, $A_{\text{FB}}^{(1)\pm}$

$$A_{\text{pol/FB}}^{(2)} = A_{\text{pol/FB}}^{(1)+} - A_{\text{pol/FB}}^{(1)-}$$

• Proposed Off Z Pole Asymmetry Measurements

- O Asymmetries measured in the vicinity of Z pole (above+ & below-)
 - Two-sided cross section asymmetries: A 1)

- 2)
- Two-sided version of asymmetries in 2): 3)

J.Zhou (UMass Amherst)

$$\Lambda_{\sigma} = \frac{\sigma(M_Z + \Delta_+) - \sigma(M_Z - \Delta_-)}{\sigma(M_Z + \Delta_+) + \sigma(M_Z - \Delta_-)}$$

One-sided electron polarization and forward-backward (FB) asymmetries: $A_{\text{pol}}^{(1)\pm}$, $A_{\text{FB}}^{(1)\pm}$

$$A_{\text{pol/FB}}^{(2)} = A_{\text{pol/FB}}^{(1)+} - A_{\text{pol/FB}}^{(1)-}$$

Finding < Cut-off scale reach can be as much as $\sim \mathcal{O}(100)$ TeV

Cross Section involving D6 4f operators

11 four fermion operators

$$\begin{aligned}
\ell^{+}\ell^{-} \\
O_{\ell\ell}^{s} &= \frac{1}{2} \left(\bar{\ell}\gamma^{\mu}\ell \right) \left(\bar{\ell}\gamma_{\mu}\ell \right) \\
O_{\ell\ell}^{t} &= \frac{1}{2} \left(\bar{\ell}\gamma^{\mu}\sigma^{a}\ell \right) \left(\bar{\ell}\gamma_{\mu}\sigma^{a}\ell \right) \\
O_{\ell e}^{t} &= \left(\bar{\ell}\gamma^{\mu}\ell \right) \left(\bar{e}\gamma_{\mu}e \right) \\
O_{ee}^{t} &= \frac{1}{2} \left(\bar{e}\gamma^{\mu}e \right) \left(\bar{e}\gamma_{\mu}e \right)
\end{aligned}$$

Z.Y. Han and W. Skiba, *Phys.Rev.D* 71 (2005) 075009 $O_{\ell q}^{s} = (\bar{\ell}\gamma^{\mu}\ell)$ $O_{\ell q}^{t} = (\bar{\ell}\gamma^{\mu}\sigma^{a}\ell)$ $O_{q e}^{s} = (\bar{q}\gamma^{\mu}q)$ $O_{\ell u}^{s} = (\bar{\ell}\gamma^{\mu}\ell)$ $O_{\ell d}^{s} = (\bar{\ell}\gamma^{\mu}\ell)$ $O_{e u}^{s} = (\bar{e}\gamma^{\mu}e)$ $O_{e d}^{s} = (\bar{e}\gamma^{\mu}e)$

qq

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

$$\begin{array}{l} \overline{q} & (\bar{q}\gamma_{\mu}q) \\ (\bar{q}\gamma_{\mu}\sigma^{a}q) \\ (\bar{q}\gamma_{\mu}\sigma^{a}q) \\ (\bar{q}\gamma_{\mu}e) \\ (\bar{u}\gamma_{\mu}u) \\ (\bar{d}\gamma_{\mu}d) \\ (\bar{d}\gamma_{\mu}d) \\ (\bar{d}\gamma_{\mu}d) \\ (\bar{d}\gamma_{\mu}d) \end{array}$$

Nov. 8, 2021

•Cross Section involving D6 4f operators

11 four fermion operators

l + l -

$$\frac{U \cdot U}{O_{\ell\ell}^s = \frac{1}{2} \left(\bar{\ell} \gamma^{\mu} \ell \right) \left(\bar{\ell} \gamma_{\mu} \ell \right)} \\
O_{\ell\ell}^s = \frac{1}{2} \left(\bar{\ell} \gamma^{\mu} \sigma^a \ell \right) \left(\bar{\ell} \gamma_{\mu} \sigma^a \ell \right) \\
O_{\ell e} = \left(\bar{\ell} \gamma^{\mu} \ell \right) \left(\bar{e} \gamma_{\mu} e \right) \\
O_{ee} = \frac{1}{2} \left(\bar{e} \gamma^{\mu} e \right) \left(\bar{e} \gamma_{\mu} e \right)$$

Z.Y. Han and W. Skiba, Phys.Rev.D 71 (2005) 075009

 $O^s_{\ell q} = \left(\bar{\ell}\gamma^\mu\ell\right)\left(\bar{q}\gamma_\mu q\right)$ $O_{\ell q}^{t} = \left(\bar{\ell}\gamma^{\mu}\sigma^{a}\ell\right)\left(\bar{q}\gamma_{\mu}\sigma^{a}q\right)$ $O_{qe}^{s} = \left(\bar{q}\gamma^{\mu}q\right)\left(\bar{e}\gamma_{\mu}e\right)$ $O^s_{\ell u} = \left(\bar{\ell}\gamma^\mu\ell\right)\left(\bar{u}\gamma_\mu u\right)$ $O^s_{\ell d} = \left(\bar{\ell}\gamma^\mu\ell\right)\left(\bar{d}\gamma_\mu d\right)$ $O_{eu}^s = (\bar{e}\gamma^\mu e) \left(\bar{u}\gamma_\mu u \right)$ $O_{ed}^s = (\bar{e}\gamma^\mu e) \left(\bar{d}\gamma_\mu d \right)$

qq

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

O Cross Sections to Asymmetry

Nov. 8, 2021 6

•Cross Section involving D6 4f operators

11 four fermion operators

l + l -

$$\frac{U \cdot U}{O_{\ell\ell}^s = \frac{1}{2} \left(\bar{\ell} \gamma^{\mu} \ell \right) \left(\bar{\ell} \gamma_{\mu} \ell \right)} \\
O_{\ell\ell}^s = \frac{1}{2} \left(\bar{\ell} \gamma^{\mu} \sigma^a \ell \right) \left(\bar{\ell} \gamma_{\mu} \sigma^a \ell \right) \\
O_{\ell e} = \left(\bar{\ell} \gamma^{\mu} \ell \right) \left(\bar{e} \gamma_{\mu} e \right) \\
O_{ee} = \frac{1}{2} \left(\bar{e} \gamma^{\mu} e \right) \left(\bar{e} \gamma_{\mu} e \right)$$

Z.Y. Han and W. Skiba, Phys.Rev.D 71 (2005) 075009

 $O^s_{\ell q} = \left(\bar{\ell}\gamma^\mu\ell\right)\left(\bar{q}\gamma_\mu q\right)$ $O_{\ell q}^{t} = \left(\bar{\ell}\gamma^{\mu}\sigma^{a}\ell\right)\left(\bar{q}\gamma_{\mu}\sigma^{a}q\right)$ $O_{qe}^{s} = (\bar{q}\gamma^{\mu}q) \left(\bar{e}\gamma_{\mu}e\right)$ $O^s_{\ell \mu} = \left(\bar{\ell}\gamma^{\mu}\ell\right)\left(\bar{u}\gamma_{\mu}u\right)$ $O^s_{\ell d} = \left(\bar{\ell}\gamma^\mu\ell\right)\left(\bar{d}\gamma_\mu d\right)$ $O_{eu}^s = (\bar{e}\gamma^\mu e) \left(\bar{u}\gamma_\mu u \right)$ $O_{ed}^s = \left(\bar{e}\gamma^{\mu}e\right)\left(\bar{d}\gamma_{\mu}d\right)$

qq

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

O Cross Sections to Asymmetry

Nov. 8, 2021

•Cross Section involving D6 4f operators

11 four fermion operators

l + l -

$$\frac{U \cdot U}{O_{\ell\ell}^s = \frac{1}{2} \left(\bar{\ell} \gamma^{\mu} \ell \right) \left(\bar{\ell} \gamma_{\mu} \ell \right)} \\
O_{\ell\ell}^s = \frac{1}{2} \left(\bar{\ell} \gamma^{\mu} \sigma^a \ell \right) \left(\bar{\ell} \gamma_{\mu} \sigma^a \ell \right) \\
O_{\ell e} = \left(\bar{\ell} \gamma^{\mu} \ell \right) \left(\bar{e} \gamma_{\mu} e \right) \\
O_{ee} = \frac{1}{2} \left(\bar{e} \gamma^{\mu} e \right) \left(\bar{e} \gamma_{\mu} e \right)$$

Z.Y. Han and W. Skiba, Phys.Rev.D 71 (2005) 075009

 $O^s_{\ell q} = \left(\bar{\ell}\gamma^\mu\ell\right)\left(\bar{q}\gamma_\mu q\right)$ $O_{\ell q}^{t} = \left(\bar{\ell}\gamma^{\mu}\sigma^{a}\ell\right)\left(\bar{q}\gamma_{\mu}\sigma^{a}q\right)$ $O_{qe}^{s} = (\bar{q}\gamma^{\mu}q) \left(\bar{e}\gamma_{\mu}e\right)$ $O^s_{\ell \mu} = \left(\bar{\ell}\gamma^{\mu}\ell\right)\left(\bar{u}\gamma_{\mu}u\right)$ $O^s_{\ell d} = \left(\bar{\ell}\gamma^\mu\ell\right)\left(\bar{d}\gamma_\mu d\right)$ $O_{eu}^s = (\bar{e}\gamma^\mu e) \left(\bar{u}\gamma_\mu u \right)$ $O_{ed}^s = \left(\bar{e}\gamma^{\mu}e\right)\left(\bar{d}\gamma_{\mu}d\right)$

qq

J.Zhou (UMass Amherst)

O Cross Sections to Asymmetry

SM $\sigma_{\rm SM}^{\rho\lambda}$, $\sigma_{\rm SM}^{\rm F(B)} \longrightarrow A_{\rm SM}$

CEPC Intl. Workshop, Nanjing

Nov. 8, 2021

•Cross Section involving D6 4f operators

11 four fermion operators

l + l -

$$\frac{U \cdot U}{O_{\ell\ell}^s = \frac{1}{2} \left(\bar{\ell} \gamma^{\mu} \ell \right) \left(\bar{\ell} \gamma_{\mu} \ell \right)} \\
O_{\ell\ell}^s = \frac{1}{2} \left(\bar{\ell} \gamma^{\mu} \sigma^a \ell \right) \left(\bar{\ell} \gamma_{\mu} \sigma^a \ell \right) \\
O_{\ell e} = \left(\bar{\ell} \gamma^{\mu} \ell \right) \left(\bar{e} \gamma_{\mu} e \right) \\
O_{ee} = \frac{1}{2} \left(\bar{e} \gamma^{\mu} e \right) \left(\bar{e} \gamma_{\mu} e \right)$$

Z.Y. Han and W. Skiba, Phys.Rev.D 71 (2005) 075009

 $O^s_{\ell q} = \left(\bar{\ell}\gamma^\mu\ell\right)\left(\bar{q}\gamma_\mu q\right)$ $O_{\ell q}^{t} = \left(\bar{\ell}\gamma^{\mu}\sigma^{a}\ell\right)\left(\bar{q}\gamma_{\mu}\sigma^{a}q\right)$ $O_{qe}^{s} = \left(\bar{q}\gamma^{\mu}q\right)\left(\bar{e}\gamma_{\mu}e\right)$ $O^s_{\ell \mu} = \left(\bar{\ell}\gamma^{\mu}\ell\right)\left(\bar{u}\gamma_{\mu}u\right)$ $O^s_{\ell d} = \left(\bar{\ell}\gamma^\mu\ell\right)\left(\bar{d}\gamma_\mu d\right)$ $O_{eu}^s = (\bar{e}\gamma^\mu e) \left(\bar{u}\gamma_\mu u \right)$ $O_{ed}^s = \left(\bar{e}\gamma^{\mu}e\right)\left(\bar{d}\gamma_{\mu}d\right)$

qq

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

Probing New Physics with Off Z Pole Observables @ CEPC

O Cross Sections to Asymmetry

•Cross Section involving D6 4f operators

11 four fermion operators

l + l -

$$\frac{U \cdot U}{O_{\ell\ell}^s = \frac{1}{2} \left(\bar{\ell} \gamma^{\mu} \ell \right) \left(\bar{\ell} \gamma_{\mu} \ell \right)} \\
O_{\ell\ell}^s = \frac{1}{2} \left(\bar{\ell} \gamma^{\mu} \sigma^a \ell \right) \left(\bar{\ell} \gamma_{\mu} \sigma^a \ell \right) \\
O_{\ell e} = \left(\bar{\ell} \gamma^{\mu} \ell \right) \left(\bar{e} \gamma_{\mu} e \right) \\
O_{ee} = \frac{1}{2} \left(\bar{e} \gamma^{\mu} e \right) \left(\bar{e} \gamma_{\mu} e \right)$$

Z.Y. Han and W. Skiba, Phys.Rev.D 71 (2005) 075009

 $O^s_{\ell q} = \left(\bar{\ell}\gamma^\mu\ell\right)\left(\bar{q}\gamma_\mu q\right)$ $O_{\ell q}^{t} = \left(\bar{\ell}\gamma^{\mu}\sigma^{a}\ell\right)\left(\bar{q}\gamma_{\mu}\sigma^{a}q\right)$ $O_{qe}^{s} = \left(\bar{q}\gamma^{\mu}q\right)\left(\bar{e}\gamma_{\mu}e\right)$ $O^s_{\ell u} = \left(\bar{\ell}\gamma^\mu \ell\right) \left(\bar{u}\gamma_\mu u\right)$ $O^s_{\ell d} = \left(\bar{\ell}\gamma^\mu\ell\right)\left(\bar{d}\gamma_\mu d\right)$ $O_{eu}^s = (\bar{e}\gamma^\mu e) (\bar{u}\gamma_\mu u)$ $O_{ed}^s = \left(\bar{e}\gamma^{\mu}e\right)\left(\bar{d}\gamma_{\mu}d\right)$

qq

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

Probing New Physics with Off Z Pole Observables @ CEPC

O Cross Sections to Asymmetry

•Cross Section involving D6 4f operators

11 four fermion operators

l + l -

$$\frac{U \cdot U}{O_{\ell\ell}^s = \frac{1}{2} \left(\bar{\ell} \gamma^{\mu} \ell \right) \left(\bar{\ell} \gamma_{\mu} \ell \right)} \\
O_{\ell\ell}^s = \frac{1}{2} \left(\bar{\ell} \gamma^{\mu} \sigma^a \ell \right) \left(\bar{\ell} \gamma_{\mu} \sigma^a \ell \right) \\
O_{\ell e} = \left(\bar{\ell} \gamma^{\mu} \ell \right) \left(\bar{e} \gamma_{\mu} e \right) \\
O_{ee} = \frac{1}{2} \left(\bar{e} \gamma^{\mu} e \right) \left(\bar{e} \gamma_{\mu} e \right)$$

Z.Y. Han and W. Skiba, Phys.Rev.D 71 (2005) 075009

 $O^s_{\ell q} = \left(\bar{\ell}\gamma^\mu\ell\right)\left(\bar{q}\gamma_\mu q\right)$ $O_{\ell q}^{t} = \left(\bar{\ell}\gamma^{\mu}\sigma^{a}\ell\right)\left(\bar{q}\gamma_{\mu}\sigma^{a}q\right)$ $O_{ae}^{s} = (\bar{q}\gamma^{\mu}q) \left(\bar{e}\gamma_{\mu}e\right)$ $O^s_{\ell \mu} = \left(\bar{\ell}\gamma^{\mu}\ell\right)\left(\bar{u}\gamma_{\mu}u\right)$ $O^s_{\ell d} = \left(\bar{\ell}\gamma^\mu\ell\right)\left(\bar{d}\gamma_\mu d\right)$ $O_{eu}^s = (\bar{e}\gamma^\mu e) \left(\bar{u}\gamma_\mu u \right)$ $O_{ed}^s = \left(\bar{e}\gamma^{\mu}e\right)\left(\bar{d}\gamma_{\mu}d\right)$

qq

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

Probing New Physics with Off Z Pole Observables @ CEPC

O Cross Sections to Asymmetry

Nov. 8, 2021

•Cross Section involving D6 4f operators

11 four fermion operators

l + l -

$$\frac{U \cdot U}{O_{\ell\ell}^s = \frac{1}{2} \left(\bar{\ell} \gamma^{\mu} \ell \right) \left(\bar{\ell} \gamma_{\mu} \ell \right)} \\
O_{\ell\ell}^s = \frac{1}{2} \left(\bar{\ell} \gamma^{\mu} \sigma^a \ell \right) \left(\bar{\ell} \gamma_{\mu} \sigma^a \ell \right) \\
O_{\ell e} = \left(\bar{\ell} \gamma^{\mu} \ell \right) \left(\bar{e} \gamma_{\mu} e \right) \\
O_{ee} = \frac{1}{2} \left(\bar{e} \gamma^{\mu} e \right) \left(\bar{e} \gamma_{\mu} e \right)$$

Z.Y. Han and W. Skiba, Phys.Rev.D 71 (2005) 075009

 $O^s_{\ell q} = \left(\bar{\ell}\gamma^\mu\ell\right)\left(\bar{q}\gamma_\mu q\right)$ $O_{\ell q}^{t} = \left(\bar{\ell}\gamma^{\mu}\sigma^{a}\ell\right)\left(\bar{q}\gamma_{\mu}\sigma^{a}q\right)$ $O_{ae}^{s} = (\bar{q}\gamma^{\mu}q) \left(\bar{e}\gamma_{\mu}e\right)$ $O^s_{\ell \mu} = \left(\bar{\ell}\gamma^{\mu}\ell\right)\left(\bar{u}\gamma_{\mu}u\right)$ $O^s_{\ell d} = \left(\bar{\ell}\gamma^\mu\ell\right)\left(\bar{d}\gamma_\mu d\right)$ $O_{eu}^s = (\bar{e}\gamma^\mu e) (\bar{u}\gamma_\mu u)$ $O_{ed}^s = \left(\bar{e}\gamma^{\mu}e\right)\left(\bar{d}\gamma_{\mu}d\right)$

qq

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

Probing New Physics with Off Z Pole Observables @ CEPC

O Cross Sections to Asymmetry

Nov. 8, 2021

O New Physics Signal

•Cross Section involving D6 4f operators

11 four fermion operators

 $\rho + \rho -$

$$\frac{U \cdot U}{O_{\ell\ell}^s = \frac{1}{2} \left(\bar{\ell} \gamma^{\mu} \ell \right) \left(\bar{\ell} \gamma_{\mu} \ell \right)} \\
O_{\ell\ell}^s = \frac{1}{2} \left(\bar{\ell} \gamma^{\mu} \sigma^a \ell \right) \left(\bar{\ell} \gamma_{\mu} \sigma^a \ell \right) \\
O_{\ell e} = \left(\bar{\ell} \gamma^{\mu} \ell \right) \left(\bar{e} \gamma_{\mu} e \right) \\
O_{ee} = \frac{1}{2} \left(\bar{e} \gamma^{\mu} e \right) \left(\bar{e} \gamma_{\mu} e \right)$$

Z.Y. Han and W. Skiba, Phys.Rev.D 71 (2005) 075009

 $O^s_{\ell q} = \left(\bar{\ell}\gamma^\mu\ell\right)\left(\bar{q}\gamma_\mu q\right)$ $O_{\ell q}^{t} = \left(\bar{\ell}\gamma^{\mu}\sigma^{a}\ell\right)\left(\bar{q}\gamma_{\mu}\sigma^{a}q\right)$ $O_{qe}^{s} = \left(\bar{q}\gamma^{\mu}q\right)\left(\bar{e}\gamma_{\mu}e\right)$ $O^s_{\ell \mu} = \left(\bar{\ell}\gamma^{\mu}\ell\right)\left(\bar{u}\gamma_{\mu}u\right)$ $O^s_{\ell d} = \left(\bar{\ell}\gamma^\mu\ell\right)\left(\bar{d}\gamma_\mu d\right)$ $O_{eu}^s = (\bar{e}\gamma^\mu e) (\bar{u}\gamma_\mu u)$ $O_{ed}^s = (\bar{e}\gamma^\mu e) \left(\bar{d}\gamma_\mu d \right)$

qq

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

Probing New Physics with Off Z Pole Observables @ CEPC

O Cross Sections to Asymmetry

 $A_{\rm NP} = \delta A = |A_{\rm tot} - A_{\rm SM}|$

•Cross Section involving D6 4f operators

11 four fermion operators

 $\rho + \rho -$

$$\frac{U \cdot U}{O_{\ell\ell}^s = \frac{1}{2} \left(\bar{\ell} \gamma^{\mu} \ell \right) \left(\bar{\ell} \gamma_{\mu} \ell \right)} \\
O_{\ell\ell}^s = \frac{1}{2} \left(\bar{\ell} \gamma^{\mu} \sigma^a \ell \right) \left(\bar{\ell} \gamma_{\mu} \sigma^a \ell \right) \\
O_{\ell e} = \left(\bar{\ell} \gamma^{\mu} \ell \right) \left(\bar{e} \gamma_{\mu} e \right) \\
O_{ee} = \frac{1}{2} \left(\bar{e} \gamma^{\mu} e \right) \left(\bar{e} \gamma_{\mu} e \right)$$

Z.Y. Han and W. Skiba, Phys.Rev.D 71 (2005) 075009

 $O^s_{\ell q} = \left(\bar{\ell}\gamma^\mu\ell\right)\left(\bar{q}\gamma_\mu q\right)$ $O_{\ell q}^{t} = \left(\bar{\ell}\gamma^{\mu}\sigma^{a}\ell\right)\left(\bar{q}\gamma_{\mu}\sigma^{a}q\right)$ $O_{ae}^{s} = (\bar{q}\gamma^{\mu}q) \left(\bar{e}\gamma_{\mu}e\right)$ $O^s_{\ell \mu} = \left(\bar{\ell}\gamma^{\mu}\ell\right)\left(\bar{u}\gamma_{\mu}u\right)$ $O^s_{\ell d} = \left(\bar{\ell}\gamma^\mu\ell\right)\left(\bar{d}\gamma_\mu d\right)$ $O_{eu}^s = (\bar{e}\gamma^\mu e) (\bar{u}\gamma_\mu u)$ $O_{ed}^s = (\bar{e}\gamma^\mu e) \left(\bar{d}\gamma_\mu d \right)$

qq

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

Probing New Physics with Off Z Pole Observables @ CEPC

O Cross Sections to Asymmetry

Nov. 8, 2021

Cross Section involving D6 4f operators

11 four fermion operators

$\ell^+\ell^-$			$q\bar{q}$								
$O^s_{\ell\ell} = \frac{1}{2} \left(\bar{\ell} \gamma^\mu \ell \right) \left(-\frac{1}{2} \left(\bar{\ell} \gamma^\mu \ell \right) \right) \left(-\frac{1}{2} \left(-\frac{1}{2} \left(\bar{\ell} \gamma^\mu \ell \right) \right) \right) \left(-\frac{1}{2} \left(-\frac{1}{$	($O^s_{\ell q} = \left(\bar{\ell}\gamma^\mu\ell\right)\left(\bar{q}\gamma_\mu q\right)$									
$O_{\ell\ell}^t = \frac{1}{2} \left(\bar{\ell} \gamma^\mu \sigma^a \ell \right) \right) \left(\bar{\ell} \gamma^\mu \sigma^a \ell \right) \left(\ell$	$O_{\ell q}^t$	$O_{\ell q}^{t} = \left(\bar{\ell}\gamma^{\mu}\sigma^{a}\ell\right)\left(\bar{q}\gamma_{\mu}\sigma^{a}q\right)$									
$O_{\ell e} = \left(\bar{\ell} \gamma^{\mu} \ell \right) \left(\bar{e} \gamma_{\mu} e \right) $			$O_{qe}^s = \left(\bar{q}\gamma^\mu q\right) \left(\bar{e}\gamma_\mu e\right)$								
$O_{ee} = \frac{1}{2} \left(\bar{e} \gamma^{\mu} e \right) \left(e^{i \bar{e} \gamma^{\mu} e} \right) \left(e^{i $	$ar{e}\gamma_{\mu}e)$	6	$\mathcal{D}^s_{\ell u} =$	$\left(\bar{\ell}\gamma^{\mu}\ell\right)$	$(\bar{u}\gamma_{\mu}u)$)					
7Y Han and W Skiba		($D^s_{\ell d} =$	$(\bar{\ell}\gamma^{\mu}\ell)$	$\left(ar{d} \gamma_{\mu} d ight)$)					
Phys.Rev.D 71 (2005)	, 075009	($\mathcal{D}_{eu}^s =$	$(\bar{e}\gamma^{\mu}e)$	$(\bar{u}\gamma_{\mu}u)$)					
			$\mathcal{D}_{ed}^s =$	$(\bar{e}\gamma^{\mu}e)$	$\left(ar{d} \gamma_{\mu} d \right)$)					
LEP2 constraints $\Rightarrow \Lambda \sim 10$ TeV											
	O_{ll}^s	O_{ll}^t	O_{lq}^s	O_{lq}^t	O_{le}	O_{qe}	O_{lu}				
$4\pi\kappa$ c_i	-8.45	-0.35	4.07	8.28	-2.23	-5.0	5.07				

			O^s_{ll}	O_{ll}^t	O_{lq}^s	O_{lq}^t
$c_i \sim -$	$4\pi\kappa$	c_i	-8.45	-0.35	4.07	8.28
	Λ_i	Λ_i (10 TeV)	1.22	6.03	1.76	1.23

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

2.37

1.59

Probing New Physics with Off Z Pole Observables @ CEPC

O Cross Sections to Asymmetry

Cross Section Asymmetry

O Cross section asymmetry across Z pole:

$$A_{\sigma}\left(\Delta_{\pm}\right) = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}} = \frac{\sigma_{+}}{\sigma_{+}}$$

J.Zhou (UMass Amherst)

 $\frac{\sigma \left(M_{Z} + \Delta_{+} \right) - \sigma \left(M_{Z} - \Delta_{-} \right)}{\sigma \left(M_{Z} + \Delta_{+} \right) + \sigma \left(M_{Z} - \Delta_{-} \right)}$

Cross Section Asymmetry

O Cross section asymmetry across Z pole:

$$A_{\sigma}\left(\Delta_{\pm}\right) = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}} = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+}} = \frac{\sigma_{+} - \sigma_{+}}{\sigma_{+}} = \frac{\sigma_{+} - \sigma_{+}}{\sigma_{+}} = \frac{\sigma_{+} - \sigma_{+}$$

a) In symmetric off Z pole run:
$$\Delta_+ = \Delta_+$$

J.Zhou (UMass Amherst)

 $\frac{\sigma \left(M_{Z} + \Delta_{+} \right) - \sigma \left(M_{Z} - \Delta_{-} \right)}{\sigma \left(M_{Z} + \Delta_{+} \right) + \sigma \left(M_{Z} - \Delta_{-} \right)}$

$\Delta_{-} = \Delta$

Cross Section Asymmetry

O Cross section asymmetry across Z pole:

$$A_{\sigma}\left(\Delta_{\pm}\right) = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}} = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+}} = \frac{\sigma_{+} - \sigma_{+}}{\sigma_{+}} = \frac{\sigma_{+} - \sigma_{+}}{\sigma_{+}} = \frac{\sigma_{+} - \sigma_{+}$$

a) In symmetric off Z pole run:
$$\Delta_+ = \Delta_+$$

b) In asymmetric) off Z pole run:
$$\Delta_+ \neq$$

J.Zhou (UMass Amherst)

 $\frac{\sigma \left(M_{Z} + \Delta_{+} \right) - \sigma \left(M_{Z} - \Delta_{-} \right)}{\sigma \left(M_{Z} + \Delta_{+} \right) + \sigma \left(M_{Z} - \Delta_{-} \right)}$

$\Delta = \Delta$

CEPC Intl. Workshop, Nanjing

Nov. 8, 2021 7

•Cross Section Asymmetry — Symmetric off Z Pole Run

O Symmetric: energy deviation from the Z pole is measured by a single parameter $\Delta_{\pm} = \Delta$

$$A_{\sigma}(\Delta) = \frac{\sigma(M_Z + \Delta) - \sigma(M_Z - \Delta)}{\sigma(M_Z + \Delta) + \sigma(M_Z - \Delta)}$$

osm [pb]

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

•Cross Section Asymmetry — Symmetric off Z Pole Run

O Symmetric: energy deviation from the Z pole is measured by a single parameter $\Delta_{\pm} = \Delta$

$$A_{\sigma}(\Delta) = \frac{\sigma(M_Z + \Delta) - \sigma(M_Z - \Delta)}{\sigma(M_Z + \Delta) + \sigma(M_Z - \Delta)} \qquad \text{for all }$$

$$\sigma_{\rm SM}\left(M_{Z}+\Delta\right)\neq\sigma_{\rm SM}\left(M_{Z}-\Delta\right)$$

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

•<u>Cross Section Asymmetry – Asymmetric off Z Pole Run</u>

$$A_{\sigma}\left(\sigma_{0}\right) = \frac{\sigma_{\mathrm{NP}}\left(M_{Z} + \Delta_{+}\right) - \sigma_{\mathrm{NP}}\left(M_{Z} - \Delta_{-}\right)}{\sigma_{\mathrm{NP}}\left(M_{Z} + \Delta_{+}\right) + \sigma_{\mathrm{NP}}\left(M_{Z} - \Delta_{-}\right) + 2\epsilon}$$

 σ_{SM} [pb]

J.Z. (UMass Amherst)

• Asymmetric: for a given σ_0 the energy deviations from Z pole are Δ_{\pm} so that $A_{\sigma_{SM}}(\sigma_0) = 0$

CEPC Intl. Workshop, Nanjing

Nov. 8, 2021

•<u>Cross Section Asymmetry – Asymmetric off Z Pole Run</u>

$$A_{\sigma}\left(\sigma_{0}\right) = \frac{\sigma_{\mathrm{NP}}\left(M_{Z} + \Delta_{+}\right) - \sigma_{\mathrm{NP}}\left(M_{Z} - \Delta_{-}\right)}{\sigma_{\mathrm{NP}}\left(M_{Z} + \Delta_{+}\right) + \sigma_{\mathrm{NP}}\left(M_{Z} - \Delta_{-}\right) + 2\epsilon}$$

 σ_{SM} [pb]

J.Z. (UMass Amherst)

• Asymmetric: for a given σ_0 the energy deviations from Z pole are Δ_{\pm} so that $A_{\sigma_{SM}}(\sigma_0) = 0$

CEPC Intl. Workshop, Nanjing

Nov. 8, 2021

•<u>Cross Section Asymmetry – Asymmetric off Z Pole Run</u>

J.Z. (UMass Amherst)

CEPC Intl. Workshop, Nanjing

• Asymmetric: for a given σ_0 the energy deviations from Z pole are Δ_{\pm} so that $A_{\sigma_{SM}}(\sigma_0) = 0$

Nov. 8, 2021

<u>Cross Section Asymmetry – Symmetric off Z Pole Run</u>

J.Z. (UMass Amherst)

 $\delta A_{\sigma} vs \Delta$

CEPC Workshop, Yangzhou

April 15, 2021 10

•<u>Cross Section Asymmetry – Symmetric off Z Pole Run</u>

J.Z. (UMass Amherst)

CEPC Workshop, Yangzhou

 $\delta A_{\sigma} vs \Delta$

April 15, 2021 10
•Cross Section Asymmetry – Symmetric off Z Pole Run

J.Z. (UMass Amherst)

CEPC Workshop, Yangzhou

April 15, 2021 10

Polarization and Forward-Backward Asymmetry

a) One-sided:

$$A_{\text{pol/FB}}^{(1)}\left(\sqrt{s}\right) = \frac{\sigma_{+}\left(\sqrt{s}\right) - \sigma_{-}\left(\sqrt{s}\right)}{\sigma_{+}\left(\sqrt{s}\right) + \sigma_{-}\left(\sqrt{s}\right)}$$

b) Two-sided:

$$A_{\text{pol/FB}}^{(2)}\left(\Delta_{\pm}\right) = A_{\text{pol/FB}}^{(1)}\left(M_Z + \Delta_{\pm}\right) - A_{\text{pol/FB}}^{(1)}\left(M_Z - \Delta_{\pm}\right)$$

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

Nov. 8, 2021 11

•Polarization Asymmetry — Two-sided

Assuming $\Delta_{\pm} = \Delta \quad \delta A_{\text{pol}}^{(2)} \text{vs } \Delta$

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

Nov. 8, 2021 12

5

•Polarization Asymmetry – Two-sided

Assuming $\Delta_{\pm} = \Delta \quad \delta A_{\text{pol}}^{(2)} \text{vs } \Delta$

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

Nov. 8, 2021 12

5

•<u>Cutoff Scales in New Physics Asymmetry Signal</u>

- ^OA simple estimate of scale dependence in A_{NP}
 - a) For xsec, one-sided pol/FB Asymmetries:

$$A_{\rm NP} = \left| A_{\rm SM+NP} - A_{\rm SM} \right| = \left| \frac{\delta \sigma_{\rm SM} + \delta \sigma_{\rm NP}}{\sigma_{\rm SM} + \sigma_{\rm NP}} - \frac{\delta \sigma_{\rm SM}}{\sigma_{\rm SM}} \right| \approx \left| \frac{\delta \sigma_{\rm NP}}{\sigma_{\rm SM}} \right| \quad \text{since} \quad \left| \frac{\delta \sigma_{\rm SM}}{\sigma_{\rm SM}} \right| \ll \left| \frac{\delta \sigma_{\rm NP}}{\sigma_{\rm NP}} \right|$$

b) For two-sided pol/FB Asymmetries: $A_{\rm NP} \approx \left| \frac{\delta \sigma_{\rm NP}}{\sigma_{\rm SM}} \left(s_{+} \right) - \frac{\delta \sigma_{\rm NP}}{\sigma_{\rm SM}} \left(s_{-} \right) \right|$
Shorthand notation: $\sigma_i = \sigma_{i,+} + \sigma_{i,-}, \quad \delta \sigma_i = \sigma_{i,+} - \sigma_{i,-}, \quad i = \text{SM}, \text{NP}$

b)

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

13

•<u>Cutoff Scales in New Physics Asymmetry Signal</u>

- ^OA simple estimate of scale dependence in A_{NP}
 - a) For xsec, one-sided pol/FB Asymmetries:

$$A_{\rm NP} = \left| A_{\rm SM+NP} - A_{\rm SM} \right| = \left| \frac{\delta \sigma_{\rm SM} + \delta \sigma_{\rm NP}}{\sigma_{\rm SM} + \sigma_{\rm NP}} - \frac{\delta \sigma_{\rm SM}}{\sigma_{\rm SM}} \right| \approx \left| \frac{\delta \sigma_{\rm NP}}{\sigma_{\rm SM}} \right| \quad \text{since} \quad \left| \frac{\delta \sigma_{\rm SM}}{\sigma_{\rm SM}} \right| \ll \left| \frac{\delta \sigma_{\rm NP}}{\sigma_{\rm NP}} \right|$$

b) For two-sided pol/FB Asymmetries:
$$A_{\rm NP} \approx \left| \frac{\delta \sigma_{\rm NP}}{\sigma_{\rm SM}} \left(s_{+} \right) - \frac{\delta \sigma_{\rm NP}}{\sigma_{\rm SM}} \left(s_{-} \right) \right|$$

Shorthand notation:
$$\sigma_{i} = \sigma_{i,+} + \sigma_{i,-}, \quad \delta \sigma_{i} = \sigma_{i,+} - \sigma_{i,-}, \quad i = \text{SM, NP}$$

b)

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

<u>Cutoff Scales in New Physics Asymmetry Signal</u>

- ^OA simple estimate of scale dependence in A_{NP}
 - a) For xsec, one-sided pol/FB Asymmetries:

$$A_{\rm NP} = \left| A_{\rm SM+NP} - A_{\rm SM} \right| = \left| \frac{\delta \sigma_{\rm SM} + \delta \sigma_{\rm NP}}{\sigma_{\rm SM} + \sigma_{\rm NP}} - \frac{\delta \sigma_{\rm SM}}{\sigma_{\rm SM}} \right| \approx \left| \frac{\delta \sigma_{\rm NP}}{\sigma_{\rm SM}} \right| \text{ since } \left| \frac{\delta \sigma_{\rm SM}}{\sigma_{\rm SM}} \right| \ll \left| \frac{\delta \sigma_{\rm NP}}{\sigma_{\rm NP}} \right|$$

b) For two-sided pol/FB Asymmetries: $A_{\rm NP} \approx \left| \frac{\delta \sigma_{\rm NP}}{\sigma_{\rm SM}} \left(s_{+} \right) - \frac{\delta \sigma_{\rm NP}}{\sigma_{\rm SM}} \left(s_{-} \right) \right|$
Shorthand notation: $\sigma_{i} = \sigma_{i,+} + \sigma_{i,-}, \quad \delta \sigma_{i} = \sigma_{i,+} - \sigma_{i,-}, \quad i = \text{SM}, \text{NP}$
NP asymmetry signal with new cutoff scale Λ' yields $\implies \frac{A'_{\rm NP}}{A_{\rm NP}} \sim \frac{\Lambda^{2}}{\Lambda'^{2}}$

b)

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

<u>Cutoff Scales in New Physics Asymmetry Signal</u>

- ^OA simple estimate of scale dependence in A_{NP}
 - a) For xsec, one-sided pol/FB Asymmetries:

$$A_{\rm NP} = \left| A_{\rm SM+NP} - A_{\rm SM} \right| = \left| \frac{\delta \sigma_{\rm SM} + \delta \sigma_{\rm NP}}{\sigma_{\rm SM} + \sigma_{\rm NP}} - \frac{\delta \sigma_{\rm SM}}{\sigma_{\rm SM}} \right| \approx \left| \frac{\delta \sigma_{\rm NP}}{\sigma_{\rm SM}} \right| \sin ce \left| \frac{\delta \sigma_{\rm SM}}{\sigma_{\rm SM}} \right| \ll \left| \frac{\delta \sigma_{\rm NP}}{\sigma_{\rm NP}} \right|$$

b) For two-sided pol/FB Asymmetries: $A_{\rm NP} \approx \left| \frac{\delta \sigma_{\rm NP}}{\sigma_{\rm SM}} \left(s_{+} \right) - \frac{\delta \sigma_{\rm NP}}{\sigma_{\rm SM}} \left(s_{-} \right) \right|$
Shorthand notation: $\sigma_{i} = \sigma_{i,+} + \sigma_{i,-}, \quad \delta \sigma_{i} = \sigma_{i,+} - \sigma_{i,-}, \quad i = {\rm SM}, {\rm NP}$
NP asymmetry signal with new cutoff scale Λ' yields $\Longrightarrow \frac{A'_{\rm NP}}{A_{\rm NP}} \sim \frac{\Lambda^{2}}{\Lambda^{2}}$ current scale

b)

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

•<u>Cutoff Scales in New Physics Asymmetry Signal</u>

O Constraints for cutoff scales by projected precision

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

Cutoff Scales in New Physics Asymmetry Signal

O Constraints for cutoff scales by projected precision

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

•New Physics Sensitivity without Systematic Uncertainties

O Statistical uncertainty

$$\delta A_{\text{stat}} = 2 \sqrt{\frac{N_+ N_-}{\left(N_+ + N_-\right)^3}}$$

Equal luminosity assumption $X_{\pm} = X_0$ δ

J.Zhou (UMass Amherst)

 $- \int_{-3}^{\# \text{ of events}} \text{ integrated luminosity}$

$$\delta A_{\text{stat}} = \frac{2}{\sqrt{X_0}} \sqrt{\frac{\sigma_+ \sigma_-}{\left(\sigma_+ + \sigma_-\right)^3}}$$

CEPC Intl. Workshop, Nanjing

New Physics Sensitivity without Systematic Uncertainties

O Statistical uncertainty

ainty $\delta A_{\text{stat}} = 2 \sqrt{\frac{N_{+}N_{-}}{\left(N_{+} + N_{-}\right)^{3}}}, \quad N_{\pm} = X_{\pm}\sigma_{\pm} \text{ integrated luminosity}$

Equal luminosity assumption $X_+ = X_0$ δ

CEPC off and on Z pole runs Z mass scan

\sqrt{s} (GeV)	Luminosity (ab ⁻¹)
87.9	0.25
90.2	0.25
91.2	7
92.2	0.25
94.3	0.25

CEPC CDR Vol 2 (2018)

J.Zhou (UMass Amherst)

$$\delta A_{\text{stat}} = \frac{2}{\sqrt{X_0}} \sqrt{\frac{\sigma_+ \sigma_-}{\left(\sigma_+ + \sigma_-\right)^3}}$$

CEPC Intl. Workshop, Nanjing

•New Physics Sensitivity without Systematic Uncertainties

O Statistical uncertainty

tainty $\delta A_{\text{stat}} = 2 \sqrt{\frac{N_{+}N_{-}}{\left(N_{+} + N_{-}\right)^{3}}}, \quad N_{\pm} = X_{\pm}\sigma_{\pm} \text{ integrated luminosity}$

Equal luminosity assumption $X_+ = X_0$ δ

CEPC off and on Z pole runs Z mass scan

\sqrt{s} (GeV)	Luminosity (ab ⁻¹)
87.9	0.25
90.2	0.25
91.2	7
92.2	0.25
94.3	0.25

CEPC CDR Vol 2 (2018)

J.Zhou (UMass Amherst)

our trial

$$\delta A_{\text{stat}} = \frac{2}{\sqrt{X_0}} \sqrt{\frac{\sigma_+ \sigma_-}{\left(\sigma_+ + \sigma_-\right)^3}}$$

-**C** Two-sided:
$$X_0 = 0.5 \text{ ab}^{-1}$$

-**C** One-sided:
$$X_0 = 1 \text{ ab}^{-1}$$

CEPC Intl. Workshop, Nanjing

New Physics Sensitivity without Systematic Uncertainties

O Statistical uncertainty

tainty $\delta A_{\text{stat}} = 2 \sqrt{\frac{N_{+}N_{-}}{\left(N_{+} + N_{-}\right)^{3}}}, \quad N_{\pm} = X_{\pm}\sigma_{\pm} \text{ integrated luminosity}$

Equal luminosity assumption $X_{\pm} = X_0$ δ

CEPC off and on Z pole runs Z mass scan

our trial	Luminosity (ab ⁻¹)	\sqrt{s} (GeV)
	0.25	87.9
	0.25	90.2
	7	91.2
Investig	0.25	92.2
	0.25	94.3

CEPC CDR Vol 2 (2018)

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

$$\delta A_{\text{stat}} = \frac{2}{\sqrt{X_0}} \sqrt{\frac{\sigma_+ \sigma_-}{\left(\sigma_+ + \sigma_-\right)^3}}$$

-**C** Two-sided:
$$X_0 = 0.5 \text{ ab}^{-1}$$

-**C** One-sided:
$$X_0 = 1 \text{ ab}^-$$

ation

What is the room for scale enhancement? $\delta = \frac{A_{\rm NP}}{\delta A_{\rm stat}} \operatorname{vs} \Delta, \ \sigma_0$

New Physics Sensitivity without Systematic Uncertainties O X section asymmetry – symmetric off Z pole run: $A_{\sigma}^{\text{sym}} = \frac{\sigma (M_Z + \Delta) - \sigma (M_Z - \Delta)}{\sigma (M_Z + \Delta) + \sigma (M_Z - \Delta)}$

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

New Physics Sensitivity without Systematic Uncertainties O X section asymmetry – symmetric off Z pole run: $A_{\sigma}^{\text{sym}} = \frac{\sigma (M_Z + \Delta) - \sigma (M_Z - \Delta)}{\sigma (M_Z + \Delta) + \sigma (M_Z - \Delta)}$

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

•New Physics Sensitivity without Systematic Uncertainties

O Polarization asymmetry — one(two)-sided:

J.Zhou (UMass Amherst)

 $A_{\rm pol}^{(1)}, A_{\rm pol}^{(2)}$

CEPC Intl. Workshop, Nanjing

- •New Physics Sensitivity without Systematic Uncertainties
- Improved cut-off scales (TeV) at ± 3 GeV off Z pole at 1- σ level *

	$A^{ m sym}_{\sigma}$	$A_{ m pol}^{(1)-}$	$A_{ m pol}^{(1)+}$
O_{ll}^s	32 (18, 17)	26 (<mark>29</mark> , -)	31~(28,-)
$\mid O^s_{lq}$	54(-,-)	50~(57,-)	47 (<mark>41</mark> , -)
O_{lq}^t	99 (28, 24)	88 (<mark>99</mark> ,13)	90 (<mark>80</mark> , -)
O_{le}	40 (25, -)	48~(51, -)	41 (<mark>34</mark> , -)
O_{qe}	48(-,-)	50~(52,-)	57 (<mark>46</mark> , -)
O_{lu}	38 (-, -)	39~(44,-)	30 (<mark>27</mark> , -)
O_{ld}	33(-,-)	34 (<mark>38</mark> , -)	26 (<mark>23</mark> , -)
O_{ee}	25 (15, 14)	23~(25,-)	33~(27,-)
O_{eu}	34(-,-)	31~(32,-)	45 (36, -)
O_{ed}	$30 \ (-, -)$	-(28, -)	39(32, -)

* Numbers in orange & gray will be explained later

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

- •New Physics Sensitivity without Systematic Uncertainties
- Improved cut-off scales (TeV) at ± 3 GeV off Z pole at 1- σ level *

	$A^{ m sym}_{\sigma}$	$A_{ m pol}^{(1)-}$	$A_{ m pol}^{(1)+}$
O_{ll}^s	32 (18, 17)	26 (<mark>29</mark> , -)	31~(28,-)
$\mid O^s_{lq}$	54(-,-)	50~(57,-)	47 (<mark>41</mark> , -)
O_{lq}^t	99 (28, 24)	88 (<mark>99</mark> ,13)	90 (<mark>80</mark> , -)
O_{le}	40 (25, -)	48~(51,-)	41 (<mark>34</mark> , -)
O_{qe}	48 (-, -)	50~(52,-)	57 (<mark>46</mark> , -)
$ O_{lu}$	38 (-, -)	39~(44,-)	30 (<mark>27</mark> , -)
O_{ld}	33(-,-)	34 (38, -)	26 (<mark>23</mark> , -)
O_{ee}	25 (15, 14)	23~(25,-)	33~(27,-)
O_{eu}	34(-,-)	31 (32, -)	45 (<mark>36</mark> , -)
O_{ed}	30 (-, -)	-(28, -)	39 (<mark>32</mark> , -)

* Numbers in orange & gray will be explained later

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

- •New Physics Sensitivity (with) Systematic Uncertainties
- O Estimate systematic uncertainties Linear expansion on variables $\{x_i\}$

$$A_{\mathrm{SM}}\left(\{x_i\}\right) = A_{\mathrm{SM}}\left(\{x_{i,0}\}\right) +$$

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

- •New Physics Sensitivity (with) Systematic Uncertainties
- O Estimate systematic uncertainties Linear expansion on variables $\{x_i\}$

$$A_{\mathrm{SM}}\left(\{x_i\}\right) = A_{\mathrm{SM}}\left(\{x_{i,0}\}\right) +$$

For independent $\{\delta x_i\}$ $\delta A_{sys} = 1$

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

- •New Physics Sensitivity (with) Systematic Uncertainties
- O Estimate systematic uncertainties Linear expansion on variables $\{x_i\}$

$$A_{\mathrm{SM}}\left(\{x_i\}\right) = A_{\mathrm{SM}}\left(\{x_{i,0}\}\right) +$$

For independent $\{\delta x_i\}$ $\delta A_{sys} = 1$

Scale enhancement indicated by $\delta =$

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

- •New Physics Sensitivity(with)Systematic Uncertainties
- O Estimate systematic uncertainties Linear expansion on variables $\{x_i\}$

$$A_{\mathrm{SM}}\left(\{x_i\}\right) = A_{\mathrm{SM}}\left(\{x_{i,0}\}\right) +$$

For independent $\{\delta x_i\}$ $\delta A_{sys} = 1$

Scale enhancement indicated by $\delta =$

J.Zhou (UMass Amherst)

- •New Physics Sensitivity (with) Systematic Uncertainties
- O Estimate systematic uncertainties Linear expansion on variables $\{x_i\}$

$$A_{\mathrm{SM}}\left(\{x_i\}\right) = A_{\mathrm{SM}}\left(\{x_{i,0}\}\right) +$$

For independent $\{\delta x_i\}$ $\delta A_{sys} = 1$

Nov. 8, 2021

Scale enhancement indicated by $\delta =$

Investigation

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

Rescaling factor $\delta A_{stat} / \delta A_{stat+sys}$

19

- •New Physics Sensitivity with Systematic Uncertainties
- O Achievable precision at CEPC and FCC-ee vs LEP

	CEPC	FCC-ee	LEP
$\delta\Delta$ (MeV)	0.1	0.1	1.7
$\delta X/X$ (%)	0.01	0.01	0.034
δM_Z (MeV)	0.5	0.1	2.1
$\delta \Gamma_Z$ (MeV)	0.5	0.1	2.3

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

- •New Physics Sensitivity with Systematic Uncertainties
 - O Achievable precision at CEPC and FCC-ee vs LEP

	CEPC	FCC-ee	LEP
$\delta\Delta$ (MeV)	0.1	0.1	1.7
$\delta X/X$ (%)	0.01	0.01	0.034
δM_Z (MeV)	0.5	0.1	2.1
$\delta \Gamma_Z$ (MeV)	0.5	0.1	2.3

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

- •New Physics Sensitivity with Systematic Uncertainties
- O Achievable precision at CEPC and FCC-ee vs LEP

	CEPC	FCC-ee	LEP
$\delta\Delta$ (MeV)	0.1	0.1	1.7
$\delta X/X$ (%)	0.01	0.01	0.034
δM_Z (MeV)	0.5	0.1	2.1
$\delta \Gamma_Z$ (MeV)	0.5	0.1	2.3

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

- •New Physics Sensitivity with Systematic Uncertainties
- O Achievable precision at CEPC and FCC-ee vs LEP

	CEPC	FCC-ee	LEP
$\delta\Delta$ (MeV)	0.1	0.1	1.7
$\delta X/X$ (%)	0.01	0.01	0.034
δM_Z (MeV)	0.5	0.1	2.1
$\delta \Gamma_Z$ (MeV)	0.5	0.1	2.3

O Rescaling factors for asymmetry measurements ± 3 GeV off Z pole at 1- σ level

	$A^{ m sym}_{\sigma}$	$A_{ m pol}^{(1)-}$	$A_{ m pol}^{(1)+}$	$A_{ m pol}^{(2)}$	ŀ
$\parallel \mu^+\mu^-$	0.52892	0.99977	0.99995	0.99999	0
jj	0.30440	0.99175	0.99473	0.99862	0

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

•New Physics Sensitivity with Systematic Uncertainties

O Theoretical uncertainty

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

•New Physics Sensitivity with Systematic Uncertainties

O Theoretical uncertainty

Numeric codes for HO corrections: ZFITTER, TOPAZO, KKMC, ...

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

•New Physics Sensitivity with Systematic Uncertainties

O Theoretical uncertainty

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

New Physics Sensitivity with Systematic Uncertainties

O Theoretical uncertainty

Uncertainties in theoretical predictions

$$\Delta \alpha_{\rm had}^{(5)} \left(M_Z \right) \,, \, M_t \,, \, M_h$$

$$\delta A_{\rm th} \sim 10^{-4}$$

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

Nov. 8, 2021 22

- •New Physics Sensitivity with Systematic Uncertainties
- Improved cut-off scales (TeV) at ± 3 GeV off Z pole at 1- σ level *

	$A^{ m sym}_{\sigma}$	$A_{ m pol}^{(1)-}$	$A_{ m pol}^{(1)+}$	$A_{ m pol}^{(2)}$	$A_{ m FB}^{(1)-}$	$A_{ m FB}^{(1)+}$	$A_{ m FB}^{(2)}$
O_{ll}^s	32 (18, 17)	26 (<mark>29</mark> , -)	31 (<mark>28</mark> , -)	29 (<mark>29</mark> , -)	29 (32 , 15)	25~(23,15)	27 (28, 18)
O_{lq}^{s}	54(-,-)	50~(57,-)	47 (<mark>41</mark> , -)	48 (<mark>50</mark> , -)	53~(28,-)	52~(22,-)	52 (25, $-$)
O_{lq}^t	99 (28, 24)	88 (<mark>99</mark> ,13)	90 (<mark>80</mark> , -)	89 (91 , 16)	53~(28,-)	52~(22,-)	52 (25, $-$)
O_{le}	40 (25, -)	48~(51, -)	41 (<mark>34</mark> , -)	45 (<mark>44</mark> , -)	32~(33,-)	38 (<mark>30</mark> , -)	35 (<mark>32</mark> , -)
O_{qe}	48(-,-)	50~(52,-)	57 (<mark>46</mark> , –)	53~(50,-)	56 ($28, -$)	59 (<mark>22</mark> , –)	58~(25,-)
O_{lu}	38(-,-)	39 (<mark>44</mark> , -)	30 (<mark>27</mark> , –)	35~(37,-)	—	—	_
O_{ld}	33 (-, -)	34 (<mark>38</mark> , -)	26 (<mark>23</mark> , -)	30 (<mark>32</mark> , -)	28 (14, -)	$25\;(-,-)$	$27\;(-,-)$
O_{ee}	25 (15, 14)	23~(25,-)	33 (<mark>27</mark> , –)	28 (<mark>26</mark> , -)	22 (<mark>24</mark> , –)	$21 \ (19, 13)$	21 (22, 14)
O_{eu}	34(-,-)	31 (<mark>32</mark> , -)	45 (<mark>36</mark> , -)	38~(35,-)	_		_
O_{ed}	30 (-, -)	-(28, -)	39 (<mark>32</mark> , –)	33 (<mark>30</mark> , -)	-(-,-)	-(-,-)	-(-, -)

* orange — including HO w/o its uncertainty; gray — including HO w/ its uncertainty

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

- •New Physics Sensitivity with Systematic Uncertainties
- Improved cut-off scales (TeV) at ± 3 GeV off Z pole at 1- σ level *

	$A^{ m sym}_{\sigma}$	$A_{ m pol}^{(1)-}$	$A_{ m pol}^{(1)+}$	$A_{ m pol}^{(2)}$	$A_{ m FB}^{(1)-}$	$A_{ m FB}^{(1)+}$	$A_{ m FB}^{(2)}$
O_{ll}^s	32 (18, 17)	26 (<mark>29</mark> , -)	31 (<mark>28</mark> , -)	29 (<mark>29</mark> , -)	29 (32 , 15)	25~(23,15)	27 (28, 18)
O_{lq}^{s}	54(-,-)	50~(57,-)	47 (<mark>41</mark> , -)	48 (<mark>50</mark> , -)	53~(28,-)	52~(22,-)	52 (25, $-$)
O_{lq}^t	99 (<mark>28</mark> , 24)	88 (99,13)	90 (<mark>80</mark> , -)	89 (91 , 16)	53~(28,-)	52~(22,-)	52 (25, $-$)
O_{le}	40 (25, -)	48(51, -)	41 (<mark>34</mark> , -)	45 (<mark>44</mark> , -)	32~(33,-)	38 (<mark>30</mark> , -)	35 (<mark>32</mark> , -)
O_{qe}	48(-,-)	50~(52,-)	57 (<mark>46</mark> , -)	53~(50,-)	56 ($28, -$)	59 (<mark>22</mark> , –)	58~(25,-)
O_{lu}	38(-,-)	39 (<mark>44</mark> , –)	30 (<mark>27</mark> , –)	35~(37,-)	—	—	_
O_{ld}	33 (-, -)	34 (<mark>38</mark> , -)	26 (<mark>23</mark> , -)	30 (<mark>32</mark> , -)	28 (14, -)	$25\;(-,-)$	$27\;(-,-)$
O_{ee}	25 (15, 14)	23~(25,-)	33 (<mark>27</mark> , –)	28 (<mark>26</mark> , -)	22 (<mark>24</mark> , –)	$21 \ (19, 13)$	21 (22, 14)
O_{eu}	34(-,-)	31 (<mark>32</mark> , –)	45 (<mark>36</mark> , -)	38~(35,-)	_		_
O_{ed}	30(-,-)	-(28, -)	39 (<mark>32</mark> , –)	33 (<mark>30</mark> , -)	-(-,-)	-(-,-)	-(-, -)

* orange — including HO w/o its uncertainty; gray — including HO w/ its uncertainty

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

Conclusion

O We consider several types of asymmetry measurements designed to enhance BSM sensitivity under projected precision at future lepton colliders (e.g., CEPC). (a) two-sided cross section asymmetries A_{σ} (b) one- and two-sided initial-state polarization and FB asymmetries $A_{\text{pol}}^{(1,2)}$, $A_{\text{FB}}^{(1,2)}$

O The two-sided asymmetries should have the BSM sensitivities enhanced due to flipping sign across Z pole for the SM-BSM interference contribution, and may have them further enhanced when the SM contributions are completely cancelled (in asymmetric off Z pole run).

J.Zhou (UMass Amherst)

O In practice, the enhancement due to cross section asymmetries is limited by the systematics (mainly from luminosity), unlike that due to polarization and FB asymmetries.

• O The one-sided polarization and FB asymmetries tend to provide the most enhanced BSM sensitivities in comparison with the two-sided ones in symmetric off Z pole run.

• The cutoff scale of up to $\mathcal{O}(100)$ TeV may be accessible with completion of higher order corrections and their uncertainties being significantly advanced.

[dd]

OSM [

Cross Section & Asymmetry

•Asymmettic off Z Pole Run

$$\sigma_{\rm SM}(M_Z + \Delta_+) = \sigma_{\rm SM}(M_Z - \Delta_-)$$
Note

- Intermediate observable σ_0
- Experimental measurements Δ_+
- Theoretical guidance

J.Zhou (UMass Amherst)

• Asymmetric: for a given σ_0 the energy deviations from Z pole are Δ_{\pm} so that $A_{\sigma_{SM}}(\sigma_0) = 0$

CEPC Intl. Workshop, Nanjing

•<u>Cross Section Asymmetry – Asymmetric off Z Pole Run</u>

J.Z. (UMass Amherst)

CEPC Intl. Workshop, Nanjing

Nov. 8, 2021

28

•<u>Cross Section Asymmetry – Asymmetric off Z Pole Run</u>

J.Z. (UMass Amherst)

CEPC Intl. Workshop, Nanjing

Nov. 8, 2021

28

•Polarization Asymmetry – One-sided

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

 $\delta A_{\rm pol}^{(1)}$ vs Δ

Nov. 8, 2021 29

•Polarization Asymmetry – One-sided

J.Zhou (UMass Amherst)

 $\delta A_{\rm pol}^{(1)}$ vs Δ

CEPC Intl. Workshop, Nanjing

•FB Asymmetry – One-sided

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

 $\delta A_{\rm FB}^{(1)}$ vs Δ

•FB Asymmetry – One-sided

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

 $\delta A_{\rm FB}^{(1)}$ vs Δ

•FB Asymmetry – Two-sided

Assuming $\Delta_{\pm} = \Delta \delta \delta A_{FB}^{(2)}$ vs Δ

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

•FB Asymmetry – Two-sided

Assuming $\Delta_{\pm} = \Delta \delta \delta A_{FB}^{(2)}$ vs Δ

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

New Physics Sensitivity without Systematic Uncertainties O X section asymmetry – asymmetric off Z pole run: $A_{\sigma}^{\text{asym}} = \frac{\sigma (M_Z + \Delta_+) - \sigma (M_Z - \Delta_-)}{\sigma (M_Z + \Delta_+) + \sigma (M_Z - \Delta_-)}$

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

New Physics Sensitivity without Systematic Uncertainties O X section asymmetry – asymmetric off Z pole run: $A_{\sigma}^{\text{asym}} = \frac{\sigma (M_Z + \Delta_+) - \sigma (M_Z - \Delta_-)}{\sigma (M_Z + \Delta_+) + \sigma (M_Z - \Delta_-)}$

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

New Physics Sensitivity without Systematic Uncertainties O X section asymmetry – asymmetric off Z pole run: $A_{\sigma}^{\text{asym}} = \frac{\sigma (M_Z + \Delta_+) - \sigma (M_Z - \Delta_-)}{\sigma (M_Z + \Delta_+) + \sigma (M_Z - \Delta_-)}$

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing

•New Physics Sensitivity without Systematic Uncertainties

O FB asymmetry – one(two)-sided: $A_{\text{FR}}^{(1)}$, $A_{\text{FR}}^{(2)}$

J.Zhou (UMass Amherst)

CEPC Intl. Workshop, Nanjing