

中國科學院為能物記研究所 Institute of High Energy Physics Chinese Academy of Sciences

Jet Charge at CEPC

Hanhua Cui Manqi Ruan cuihanhua@ihep.ac.cn

The 2021 International Workshop on the High Energy Circular Electron Positron Collider November 11, 2021

Outline

- Introduction & Samples
- Method & Results
- Conclusion

Introduction & Samples

CEPC Z pole operation & flavor physics potential

Advantages:

- High productivity of b/c hadrons
- Clean collision environment
- Good VTX/tracking and PID system

Impact of Jet Charge Reconstruction:

- Electroweak measurements of A_{FB} , $\sin^2 \theta_W$
- CP measurements in neutral B/D system
- Differential measurements

Flavor production at different

Particle	Tera-Z	Belle II	LHCb
b hadrons			
B^+	$6 imes 10^{10}$	3×10^{10} (50 $\mathrm{ab^{-1}}$ on $\Upsilon(4S)$)	3×10^{13}
B^0	6×10^{10}	$3 \times 10^{10} (50 \mathrm{ab}^{-1} \text{ on } \Upsilon(4S))$	3×10^{13}
B_s	2×10^{10}	$3 imes 10^8~~(5\mathrm{ab^{-1}}~\mathrm{on}~\Upsilon(5S))$	$8 imes 10^{12}$
b baryons	1×10^{10}		1×10^{13}
Λ_b	1×10^{10}		1×10^{13}
c hadrons			
D^0	$2 imes 10^{11}$		
D^+	6×10^{10}		
D_s^+	3×10^{10}		
Λ_c^+	2×10^{10}		
τ^+	3×10^{10}	$5\times 10^{10}~(50\mathrm{ab^{-1}}$ on $\Upsilon(4S))$	

From CEPC CDR 2018

Our work: a truth level analysis of jet charge reconstruction at CEPC, using leading charged particle in each jet - test of principle

Samples:

- ► ~1×10⁵ $Z \rightarrow b\bar{b}$ at CEPC Z pole (91.2 GeV) by Sherpa
- ▶ ~1×10⁶ $Z \rightarrow b\bar{b}$ at CEPC Z pole (91.2 GeV) by Herwig
- ► ~1×10⁷ $Z \rightarrow b\bar{b}$ at CEPC Z pole (91.2 GeV) by WHIZARD195
- ► ~1×10⁷ $Z \rightarrow c\bar{c}$ at CEPC Z pole (91.2 GeV) by WHIZARD195

Different Generators Different Flavor

Method & Results

Jet Charge Algorithm

 \bar{q} jet

- Divide final state particles into two jets with the plane perpendicular to the thrust.
- Record the energy & PID of leading charged particle in each jet
- Determine the jet charge with the leading charged particle type
- Performance quantified by misjudgment rate ω and effective tagging power

Misjudgment rate ω:

→ To describe the probability of misjudging the jet charge $\omega = \frac{\text{Number of selected final particles that incorrectly reflect the charge flow of b jet to b jet}{\text{Number of selected final particles that incorrectly reflect the charge flow of b jet to b jet}}$

Number of selected final particles

Efficiency:

→ To describe the selection efficiency of $Z \rightarrow b\bar{b}$ or $Z \rightarrow c\bar{c}$ samples: Efficiency = $\frac{\text{Number of selected jet samples}}{\text{Number of all jet samples}}$

Effective tagging power ETP:

To consider both misjudgment rate ω and efficiency to describe the total performance of Jet Charge

Effective tagging power = Efficiency * $(1 - 2 * \omega)^2$

 $Z \rightarrow b\bar{b}$

Percent of final charged leading particles

 $Z \rightarrow b\bar{b}$

Percent of final charged leading particles

Percent of final charged leading particles

 $Z \rightarrow c\bar{c}$

Dependence of misjudgment rate $\boldsymbol{\omega}$

- **1. Dependence on leading particle type**
- 2. Dependence on B/C hadron type
- 3. Dependence on the source of leading particle: From B/C hadron decay or not.

Dependence on leading particle type \rightarrow **Categorize leading particles**

Lepton and Kaon can deliver better misjudgment rate ω than pion and proton. \rightarrow Misjudgment rate ω and effective tagging power of each category

bbar jet → b jet ↓	e,µ,K	π,proton	cbar jet → c jet ↓	e,µ,K	π,proton
e,µ,K	13.75% ω = 0.117	23.34% ω = 0.231	e,µ,K	11.46% ω = 0.040	22.38% ω = 0.109
π,proton	23.34% ω = 0.231	39.56% ω = 0.404	π,proton	22.38% ω = 0.109	43.77% ω = 0.263

$Z \rightarrow b\bar{b}$ Percent of B hadrons of b jet and \bar{b} jet

percent bbar jet → b jet ↓	B ⁰	B+	₿s ⁰	B _c +	Λ_b bar	others	all
B ⁰ bar	17.360%	17.350%	3.369%	0.022%	2.759%	0.688%	41.548%
B-	17.350%	17.359%	3.364%	0.022%	2.765%	0.689%	41.550%
B₅ ⁰ bar	3.355%	3.362%	0.652%	0.004%	0.545%	0.144%	8.062%
B _c -	0.022%	0.022%	0.004%	0.00003%	0.004%	0.001%	0.052%
Λ_{b}	2.762%	2.762%	0.543%	0.004%	0.451%	0.121%	6.644%
others	0.653%	0.655%	0.136%	0.001%	0.119%	0.579%	2.144%
all	41.503%	41.511%	8.068%	0.053%	6.641%	2.225%	100%

by WHIZARD195

$Z \rightarrow c\bar{c}$ Percent of C hadrons of c jet and \bar{c} jet

percent cbar jet → c jet ↓	D-	D ⁰ bar	D _s -	∧ _c -	others	all
D+	4.654%	13.302%	1.717%	1.444%	0.529%	21.532%
D0	13.290%	37.933%	4.887%	4.110%	1.122%	61.342%
D _s +	1.712%	4.894%	0.631%	0.533%	0.159%	7.929%
Λ_{c} +	1.442%	4.111%	0.533%	0.449%	0.141%	6.676%
others	0.402%	1.066%	0.148%	0.135%	0.656%	2.521%
all	21.500%	61.306%	7.916%	6.671%	2.607%	100%

by WHIZARD195

All leading particles

Leading particles from leading hadron

Leading particles from QCD

conjugate to b jet **Percent of leading particles of each B hadron of** \bar{b} **jet**

All leading particles

Leading particles from leading hadron

Leading particles from QCD

Different Generators (Whizard195 & Herwig & Sherpa)

conjugate to b jet Percent of leading particles of each B hadron of \bar{b} jet

All leading particles

Leading particles from leading hadron ~83.1%

Leading particles from QCD ~16.9%

conjugate to b jet **Percent of leading particles of each B hadron of** \bar{b} **jet**

All leading particles

Leading particles from leading hadron ~82.6%

Leading particles from QCD ~17.4%

conjugate to b jet Percent of leading particles of each B hadron of \bar{b} jet

All leading particles

Leading particles from leading hadron ~83.4%

Leading particles from QCD ~16.6%

Different flavor $(Z \rightarrow b\bar{b} \text{ v.s. } Z \rightarrow c\bar{c})$

All leading particles

Leading particles from leading hadron

Leading particles from QCD

conjugate to c jet

Percent of leading particles of each C hadron of \bar{c} jet

All leading particles

Leading particles from leading hadron

Leading particles from QCD

Conclusion

Main results:

A truth level analysis of jet charge at 91.2 pole using leading charged particle information: ★ Effective tagging power between different generators:

- For $Z \rightarrow b\bar{b}$ by Whizard195: Total effective tagging power = 0.090(single jet)
- For $Z \rightarrow b\bar{b}$ by Herwig: Total effective tagging power = 0.086(single jet)
- For $Z \rightarrow b\bar{b}$ by Sherpa: Total effective tagging power = 0.078(single jet)

★ Effective tagging power between different flavor (by Whizard195):

- For $Z \rightarrow b\bar{b}$: Total effective tagging power = 0.090(single jet) \rightarrow 0.137(double jets)
- For $Z \rightarrow c\bar{c}$: Total effective tagging power = 0.200(single jet) \rightarrow 0.301(double jets)
- \star Misjudgment rate ω & Effective tagging power dependences:
 - High dependence on leading particle type
 - Lepton and Kaon \rightarrow better misjudgment rate ω than pion and proton.
 - High dependence on B/C hadrons type
 - especially for B_s , Λ_b , Λ_c , ...
 - High dependence on the source of leading particle:
 - From B/C hadron decay \rightarrow better misjudgment rate ω & effective tagging power.

Future:

- More information from final particles (primary/secondary vertex, different categories of leading particles, sub-leading particles, K_s, ...)
- $rightarrow Truth level \rightarrow Full simulated level \rightarrow CEPC detector performance$
- Machine Learning...

Back Up

$Z \rightarrow b\bar{b}$ Angle distribution of each flavor of final leading particles

Angle distribution of two jets is asymmetry

Image The more asymmetrical, the more accurate

The lepton and Kaon is more asymmetrical than pion and proton
Proton behaves different from others

$Z \rightarrow c\bar{c}$ Angle distribution of each flavor of final leading particles

Image The more asymmetrical, the more accurate

The lepton and Kaon is more asymmetrical than pion and proton
Kaon behaves different from others

B/C hadron multiplicity

Num_B bbar jet → b jet ↓	0	1	2	3		Num_C cbar jet → c jet ↓	0	1	2	3
0	0.02%	1.25%	0.61%	1E-05		0	0.02%	1.24%	0.76%	6E-05
1	1.25%	96.08%	0.03%	0.05%		1	1.24%	94.74%	0.03%	0.46%
2	0.61%	0.03%	0.03%	2E-07		2	0.75%	0.03%	0.21%	6E-05
3	8E-06	0.05%	3E-07	2E-07		3	6E-05	0.46%	5E-05	2E-05
82.4% decayed to leading particle						66.2% decayed to leading particle				

by WHIZARD195

Effective Tagging Power of different B hadrons combination

Total Effective Tagging Power = $(13.716 \pm 0.014)\%$

% bbar jet → b jet ↓	B ⁰	B+	B _s 0	B _c +	∧₀bar
B ⁰ bar	8.403	15.213	3.775	8.961	22.144
	±0.026	±0.037	±0.037	±0.768	±0.110
B-	15.137	22.434	9.500	16.784	30.450
	±0.047	±0.062	±0.063	±1.071	±0.134
B₅⁰bar	3.730	9.673	0.382	3.406	14.756
	±0.037	±0.063	±0.024	±0.954	±0.187
B _c -	8.639 ±0.732	15.817 ±1.063	1.061 ±0.495	_	25.021 ±3.309
۸ _b	22.224	30.313	14.518	26.729	40.840
	±0.110	±0.134	±0.186	±3.322	±0.3915

charge verse & same

Effective Tagging Power of different C hadrons combination

Total Effective Tagging Power = $(30.116 \pm 0.022)\%$

% cbar jet → c jet ↓	D-	Dºbar	D _s -	∧ _c -
D+	27.184	30.702	22.353	35.202
	±0.098	±0.062	±0.144	±0.200
D ⁰	30.644	33.779	25.816	37.813
	±0.062	±0.039	±0.093	±0.124
D _s +	22.287	25.670	18.006	30.236
	±0.144	±0.093	±0.204	±0.298
∧ _c +	35.135	37.930	29.543	42.924
	±0.200	±0.124	±0.295	±0.395

charge verse & same

$Z \rightarrow b\bar{b}$ wof different decay modes v.s. Energy Threshold

Misjudgment rate ω of final leading μ^- from different decay modes v.s. **Energy Threshold**

rightarrow p- close to 0 makes μ^- closer to b jet, p- close to 1 makes μ^- closer to \overline{b} jet

$Z \rightarrow b\bar{b}$ wof different decay modes v.s. Energy Threshold

Misjudgment rate ω of final leading K^+ from different decay modes v.s. **Energy Threshold**

rightarrow p+ close to 1 makes K^+ closer to b jet, p+ close to 0 makes K^+ closer to \overline{b} jet