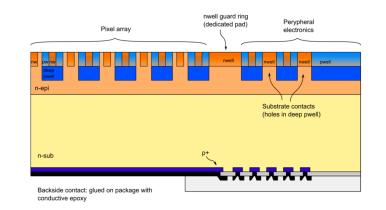
ARCADIA A novel platform for the implementation of innovative CMOS monolithic sensors

International Workshop on the CEPC November 8th - 12th, 2021

Manuel Rolo (INFN), on behalf of the ARCADIA Collaboration

Istituto Nazionale di Fisica Nucleare


ARCADIA (INFN CSNV Call Project)

Advanced Readout CMOS Architectures with Depleted Integrated sensor Arrays

Creation of a novel platform for the implementation of innovative monolithic sensors compatible with standard CMOS fabrication processes

- Challenge: deployment of large-area system-grade CMOS sensors implementing scalable readout architectures with ultra-low power capability (O(10 mW/cm2))
- Technology: LFoundry 110nm CMOS node, quad-well, high-resistivity bulk
- \blacktriangleright Active sensor thickness in the range 50 μm to 500 μm
- Operation in full depletion with fast charge collection only by drift
- Small charge collecting electrode for optimal signal-to-noise ratio

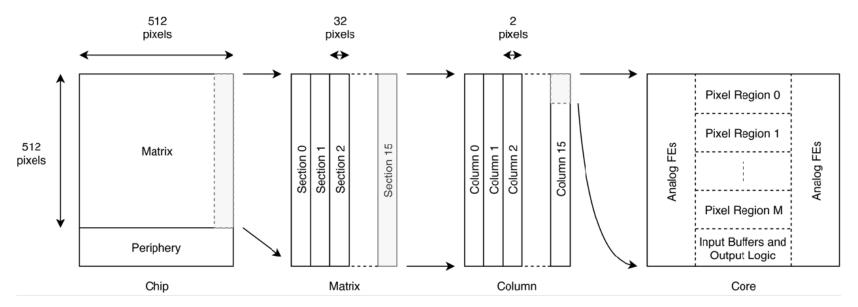
ARCADIA CMOS DMAPS at CEPC

https://indico.ihep.ac.cn/event/15229/session/6/contribution/3/material/slides/3.pdf

Projects overview: R&D schedule

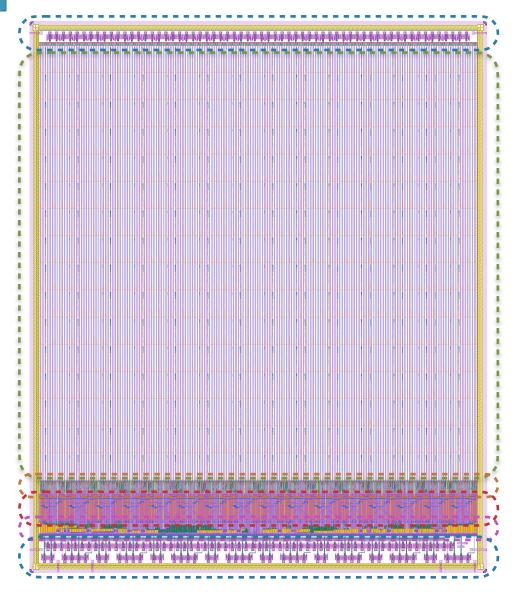
PBS	Task Name	Start	Finish	2020		2021		2022		2023		2024		2025		2026		2027		2028		2029	
				H1	H2	H1	H2	H1	12	H1	H2	H1	H2	H1	H2	H1	H2	H1	H2	H1	H2	H1	H2
	CEPC Detector R&D Project	2020/5/7	2026/12/31	-					_									1 CEP	PC Det	ector	R&D	Proj	ect
1	Vertex	2020/5/7	2023/12/29	l r	_	-	_		-		-	Ver	tex					-	-			-	
1.1	Vertex Prototype	2020/5/7	2023/12/29									Vert	ex Pi										
1.2	ARCADIA CMOS MAPS	2020/5/7	2021/12/31					ARCA	DIA	CMOS	5 MAI	PS								47	`		000
z	Tracker	2020/5/7	2024/12/31				_								ρχ	ΤΑ	n	U P	n		//	7	17
2 2.1	Tracker TPC Module and Prototype		2024/12/31 2021/12/31					TPC N	odu	ule an	d Pro	totyp	e		ex	Te	n	Cle	C		27	Z	022
2 2.1 2.2		2020/5/7						TPC N	odu	ule an		totyp Silicor			ех		n	d e	d		27	Z	UZZ
	TPC Module and Prototype	2020/5/7 2020/5/7	2021/12/31					TPC N	lodu	ule an									ed.		21	Z	UZZ
2.2	TPC Module and Prototype Silicon Tracker Prototype	2020/5/7 2020/5/7 2020/5/7	2021/12/31 2023/10/31					TPC N	lodu	ule an						mper		ues	ed		21	21	UZZ

CEPC detector R&D Project for preliminary evaluation by the CEPC International Detector R&D Committee


https://indico.ihep.ac.cn/event/15229/session/6/contribution/3/material/slides/4.pdf

1.2 ARCADIA CMOS MAPS

Document Responsible:	Manuel Rolo
Last saved by on	11/01/2021 5:00:00 PM
Revision number:	2


"The main goal of the project, started in 2019 with a timescale of 3 years, is the design, production and commissioning of an array of 512x512 pixels with a pitch of 25 x 25 μ m2 (total matrix area 1.28x1.28 cm2), embedded electronics performing sparsified readout and power consumption at the level of 20 mW/cm². This test vehicle is expected the be a viable prototype for applications at the next generation lepton colliders."

ARCADIA-MD1: Main Demonstrator Chip

- Pixel size 25 μm x 25 μm, Matrix core 512 x 512, 1.28 x 1.28 cm² silicon active area, "side-abuttable"
- Triggerless binary data readout, event rate up to 100 MHz/cm²
- First Engineering Run (SPW) takeout 11/2020, silicon being tested
- 2nd full CMOS maskset mid-2021, fab out expected January 2022
- 3rd SPW mid-2022 with design fixes, explorative sensor and CMOS designs, new architectures with higher data throughput, full chip demonstrator for fast timing (R&D on sensors and electronics already started with 2nd SPW)

ARCADIA-MD1 - Floorplan

Top Padframe

Auxiliary supply, IR Drop Measure

Matrix

512x512 pixels, Double Column arrangement

End of Sector (x16)

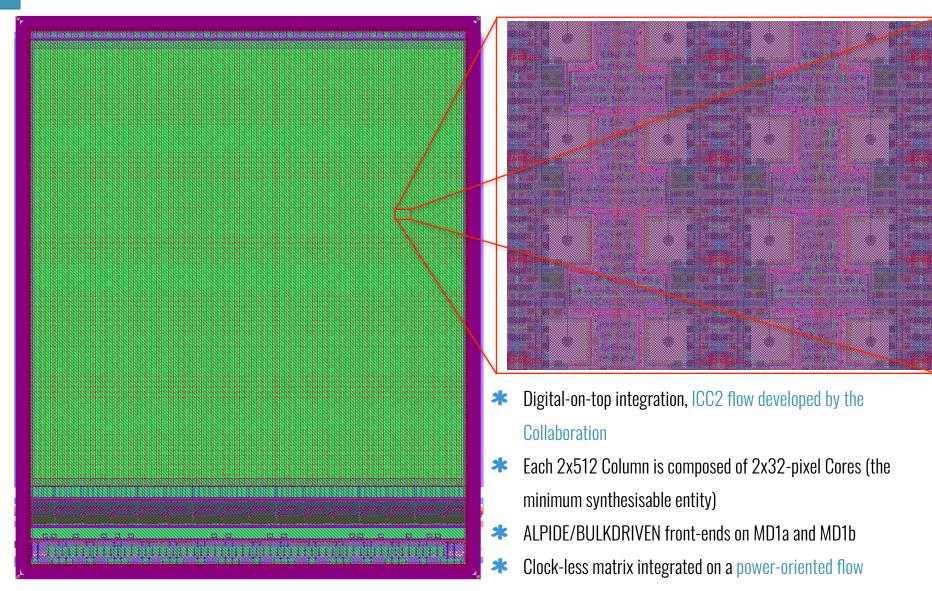
Reads and Configures 512x32 pixels

Sector Biasing (x16)

Generates I/V biases for 512x32 pixels

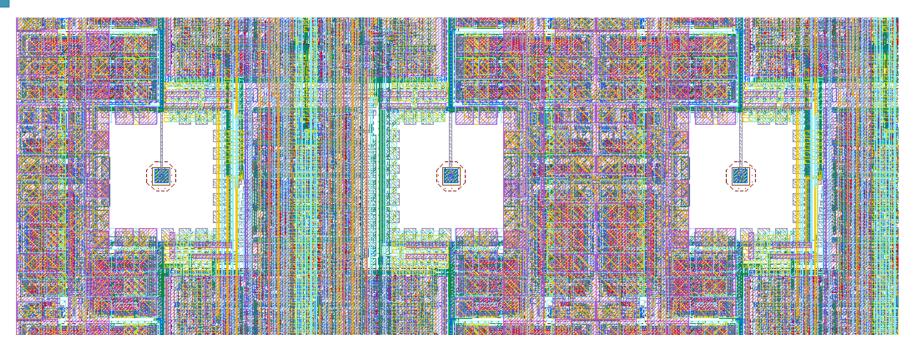
Periphery

SPI, Configuration, 8b10b enc, Serializers

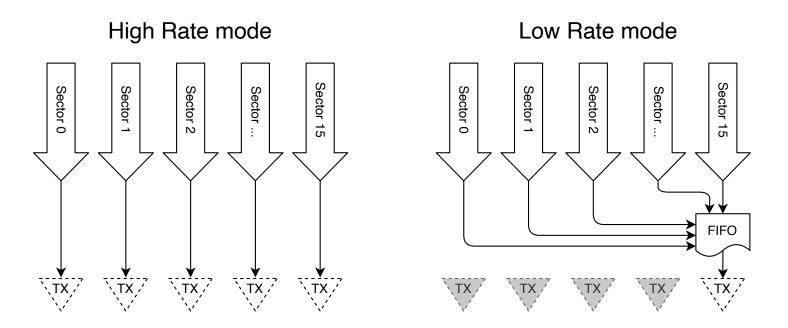

Bottom Padframe

Stacked Power and Signal pads

5

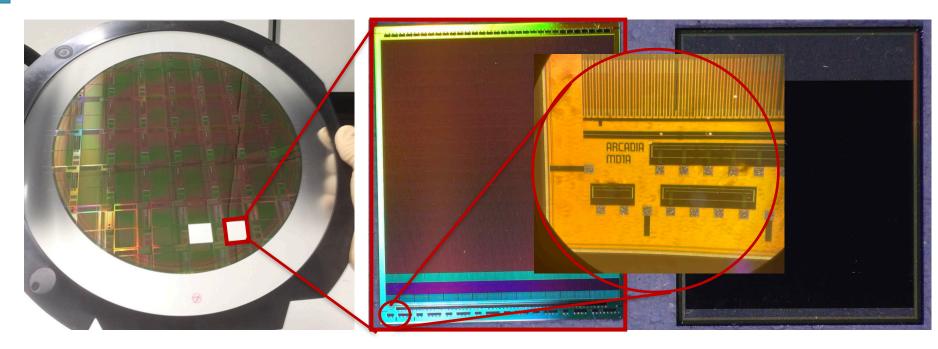

ARCADIA - Main Demonstrator Chip

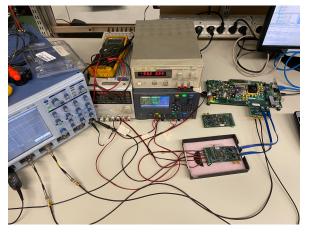
ARCADIA-MD1 - Pixels



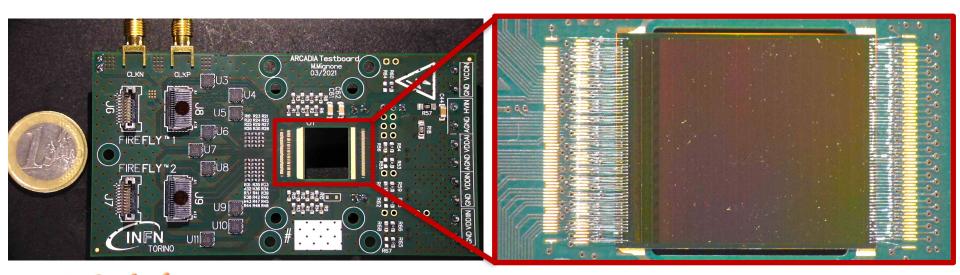
- * The pixel's area is occupied by the collection diode (16%), analog and digital circuitry
- * 2-bit pixel configuration for masking and injection enabling
- * Digital injection capability for readout chain testing, bypassing FEs
- * Custom power distribution scheme to maximize metal occupancy

ARCADIA-MD1 - Peripheral Dataflow


- Each Column (32x512 pixels) has a readout BW of 443Mbps
- Sector data is sent out (8b10b encoded) via dedicated 320MHz DDR Serialisers
- In Low Rate Mode, the first serialiser processes data from all the sections. The other serialisers and C-LVDS TXs^(*) are powered off in order to reduce power consumption.


* "A 2 Gbps custom LVDS transceiver for the ARCADIA project", talk at IEEE NSS-MIC 2021

Silicon from 1st Eng. Run - MD1



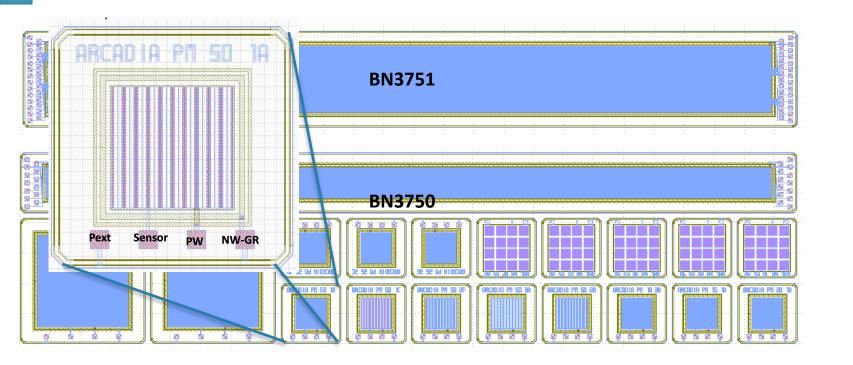
- First samples of **ARCADIA-MD1 powered-on** this summer
- Later-than-tapeout simulations identified bug on pad frame connections, simple to solve with FIB
- First data looks good & sensor depletion OK

Front-end FEB-MD1 and breakout boards

- 2 Samtec FireFly connectors for ASIC signals (Clock, SPI, Data)
- Connection to external low jitter Clock (via SMA connectors)
- High voltage to the DMAPS backside or (wirebonded) to pads on top
- Independent LDOs for IO Buffers, Analog Core, Digital Core
- PCB through-hole for matrix BSI
- custom FMC-to-Firefly breakout board

MD1: check-list from electrical tests

- Chip configuration write/readback
- Space Mode enable/disable
- \mathbf{M} Clock Gating and Clock Dividers
- ☑ Digital Injection
- ☑ LVDS SER1-15 enable/disable
- ☑ Test Pulse connectivity
- \mathbf{M} Analog FE bias and threshold scan
- Soft (SPI-enabled) and Hard (through Ext pin) Resets
- tests with analogue front-end ongoing:
 - test pulse charge injection with FE, s-curves, FE baseline map, noise measurements, depletion studies
 - next: characterisation with radioactive sources and laser



Pixel/Strip Test Structures

BN3

49

***** strips come in different flavours:

- 25 μ m pitch pixelated + 25 μ m continuous (10+10) [2 variants]
- 10 μm pixelated (4 groups of 12 strips connected to pads) [4 variants]

* and pixels as well:

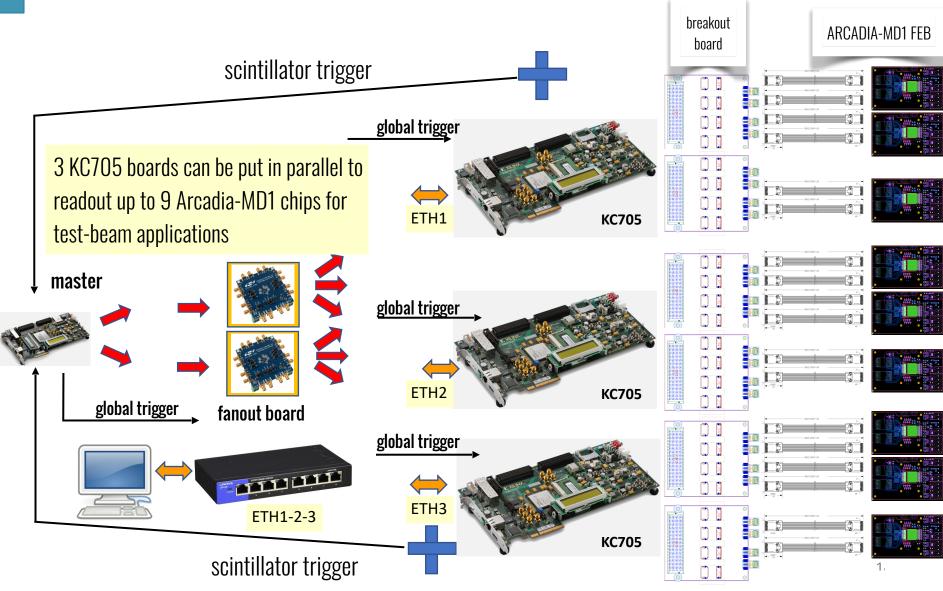
- Pseudo-Matrices of 1x1 and 2x2 mm²
- 50 μ m (5 variants)
- 25 μm (3 variants)
- 10 μm (6 variants)

Status of silicon testing - 1st SPW

- Measurements on bonded test structures (first non-irradiated and then irradiated with x-rays and neutrons), front-side and back side
- now
- 11/21

- IV curves with temperature, extraction of depletion, punch-through voltages, dark current and capacitance, first laser tests
- Charge collection with focused pulsed laser (back-side). On pixels: only signal evolution with time and position of the laser spot. On strips: charge sharing is also possible.
- Lab. sources. (top-side and back-side)

* Characterisation of the ARCADIA-MD1



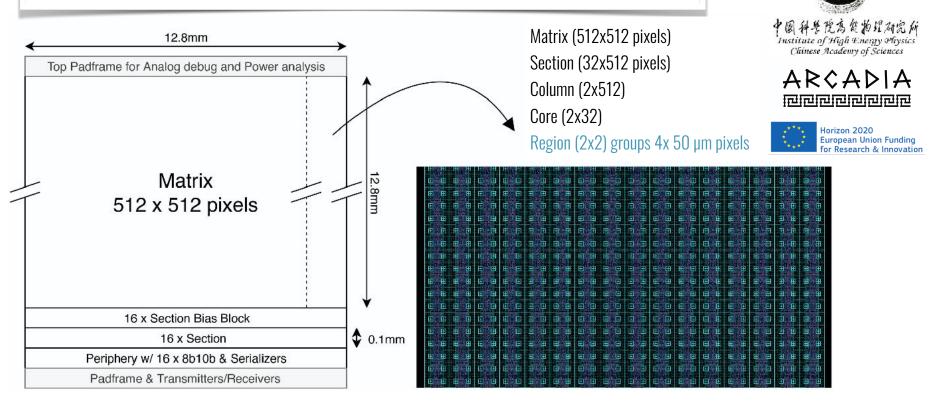
13

Manuel Rolo [INFN]

- functional and electrical characterisation (basic functionalities with on-chip test pulse and hit injection, s-curves, threshold calibration, rate assessment)
- laser scans with red and IR light (CCE vs bias voltage, uniformity, clustering and resolution)
- tests with x-ray and radioactive sources (55Fe, 241Am, 90Sr)
- cosmic ray stand (sync and event building, efficiency, resolution) and beam tests with MD1 telescopes

Multi-plane MD1 Telescope Configuration

ARCADIA-MD2

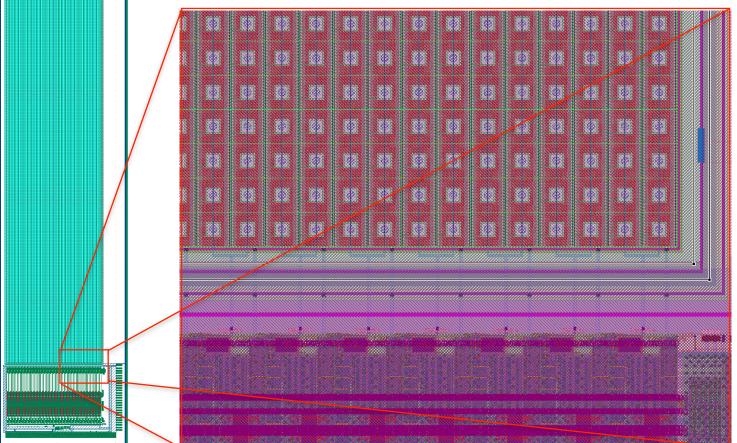


A second main demonstrator (codename ARCADIA-MD2) has been submitted in Summer 2021, featuring design and architecture improvements targeting power reduction, scalability.

- * 16x2 pixel Cores, 8 Cores in the Matrix
- Logic and buffering optimization -> Acknowledge signal propagates 7 times faster!
 - Simulations validated matrices up to 8192 pixels high
- Power optimization in the periphery
- I GHz DDR serializer -> 2Gbps bandwidth!
- Now in foundry, expected dies in January 2022.

Pixel Readout ASIC for photon-counting

in collaboration with the Division of Nuclear Technology and Applications at IHEP

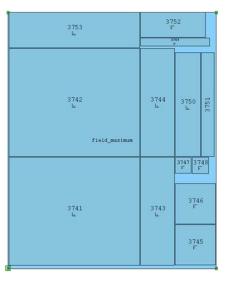


- Implementation of the sensor matrix for photon-counting ASIC using a 100 x 100 µm ARCADIA super-pixel
- Chip design and sensor simulations ongoing, silicon prototype production scheduled for 2022-Q2
- Final version should allow both a hybrid assembly of a CdTe detector and a fully-depleted silicon sensor

CMOS Embedded Si-strip and readout

Design and Production of continuous and "pixelised" strips, range 10 - 100µm pitch
Proof-of-concept: CMOS monolithic strip block and readout electronics

Manuel Rolo [INFN]


Summary and Outlook

- *** ARCADIA** has now secured a total budget of 1.4 M \in with several groups working on:
 - Sensor R&D and Technology
 - CMOS IP Design and Chip Integration
 - Data Acquisition for electrical characterisation and beam tests with multi-chip telescopes
 - Radiation Hardness qualification
 - System-level characterisation for Medical (pCT), Future Leptonic Colliders and Space Instruments

***** Schedule for 2021-2022

- ARCADIA-MD1 submitted in October 2020, first dies in June 2021
- Ist SPW run included <u>800 mm2 of innovative DMAPS</u>, sensor and CMOS technology (tests on sensors are ok, tests on all digital and analog features confirmed the expected functionality)
- 2nd run mid-2021: in foundry, <u>3rd run scheduled for mid-2022;</u>

Thank you for your time!

