The 2021 International Workshop on the High Energy Circular Electron Positron Collider November 8-12, 2021, Nanjing, China

Monolithic CMOS pixel sensors: Ongoing developments in France

Jerome Baudot Jerome.baudot@iphc.cnrs.fr

- → Brief overview of French MAPS activities
- \rightarrow 3 projects:
 - MIMOSIS / OBELIX / CE-65 & stitching

MAPS contributors in France

<u>3 laboratories currently involved</u>

- CEA-IRFU, Saclay: CACTUS project, R&D for time resolution in few tens of ps range
 - Y. Degerli, F. Guilloux, P. Schwemling et al. DOI: <u>10.1088/1748-0221/15/06/P06011</u> (small proto few mm2)
- IN2P3-CPPM, Marseille: R&D for high-rate (>100 MHz/cm²) and radiation tolerance of interest for HL-LHC, Belle II

 Coordination: M. Barbero (scientific) & P. Pangaud (technical)
- IN2P3-IPHC, Strasbourg: applications to CBM, ALICE, Belle II R&D for granular (σ_{pos} ~3 µm) and thin sensors (~0.1% X₀) for future Higgs factories

Structure @ IPHC

- Since 2019, C4Pi = core facility (~20 engineers for design and test + Docs and Postdocs)
 Technical coordination C.Hu-Guo, deputy C.Colledani / Scientific coordination J.Baudot
- Physicist involved in R&D (5-6 people)
 - PICSEL group (A.Besson et al.) for future Higgs factory & spin-off applications
 - Belle II group (I.Ripp-Baudot et al.) for an upgrade of the vertex detector
 - ALICE group (C.Kuhn et al.) for Inner Tracking System (version 2 & 3) and ALICE 3 proposal

J.Baudot - MAPS ongoing development in France - CEPC workshop - November 2021

MIMOSIS project - Context

Goals & mean

• Match CBM vertex requirements & achieve steps forward / Higgs-Factories

- combine low-power (<50 mW/cm²) & high hit-rate (>50 MHz/cm²)

- Exploits known Tower-180 nm technology
 - Follows ALICE-ITS2/ALPIDE FEE & priority encoder matrix read-out

<u>CBM Micro Vertex Detector (MVD)</u>

- Collaboration: IPHC, IKFrankfurt, GSI, H2020-CREMLIN+
- Collisions: 100 kHz Au+Au @ 11 AGeV and 10GHz p+Au @ 30 AGeV
 => large hit-rate fluctuation & operation in vacuum

	Position resolution	~5 µm			
* No safety factor	Time resolution / continuous r.o.	~5 µs			
	Power dissipation	<100 - 200 mW/cm ²			
	Hit rate (average/50 µs peak)	20/80 MHz/cm ²			
	Material budget / layer	0.05 % X ₀			
	Operation temperature	- 40°C to +30°C			
	Radiation* (non-ionizing)	~ 7x10 ¹³ n _{eq} /cm ²			
	Radiation* (ionizing)	~ 5 Mrad			
	Heavy lons-tolerance	10 Hz/mm ²			

MIMOSIS sensor - architecture

Pixel matrix

- Pixel area = $26.88 \times 30.24 \,\mu m^2$
- 504 x 1024 pixels structured in read-out regions (column groups)
- Global shutter: 5 µs integration time

Read-out

- Elastic memory concept (9 events storage capacity)
- 8 outputs (320 Mbps) for a total ~2.5 Gb/s
- Single-Event-Effects resilience
 - Triple Modular Redundancy in critical places + Error Correction Code (PhD. Y.Zhou)

Power budget

Pixel/frame	1	640
Analogue (mW)	30	30
Digital (mW)	150	200
Total (mW/cm²)	43	55

Archi, validated with MIMOSIS-0 (2018-19) M.Deveaux et al. https://doi.org/10.1016/j.nima .2019.162653

MIMOSIS sensor – process & sensing node

Process: Tower 180nm

- 2020: MIMOSIS-1 fabricated
- 2021 (late): MIMOSIS-2 submission
- >2022: final chip, MIMOSIS-3

Sensing node

- High resistive epitaxial layer (25 µm for MIMOSIS-1)
- Benefits from process modification introduced by CERN
- 2 Couplings collection node Front-End
 - DC and AC for biasing > 20V (J.Heymes DOI: 10.1088/1748-0221/14/01/P01018)

<u>Key studies:</u>

depletion role in trade-off position res. / radiation tolerance

MIMOSIS sensor – on-going tests

pixel noise [e ENC]

50

100

150

200

Radiation tolerance

- Irradiations performed
- Sensors tested in beam

All results PRELIMINARY from R.Bugiel, <u>TWEPP 2021</u>

300

pixel threshold [e ENC]

350

250

- Sensors thinned to $60 \,\mu m => telescope = 6 \times MIMOSIS$
- 3 campaigns @ DESY & CERN-SPS
- Sensors @ room temperature
- Various biasing conditions
- Analysis still in progress
 - Detection efficiency > 99%

OBELIX project

Goal and mean

- Propose a sensor for an upgraded Belle II vertex detector
 - 5 to 6 layers fully pixelated
- <u>=> cf K.Nakamura talk earlier today</u>

- Readiness for ~2026
- Exploit similarity of ATLAS-ITK & Belle II requirements
 - Adapt existing TJ-MONOPIX2 sensor (J. Dingfelder Vertex 2021)

Belle II - VTX

• Collaboration for OBELIX:

Bergamo Uni., Bonn Uni., <u>CPPM</u>, HEPHY, IFAE, IFIC, <u>IPHC</u>, INFN-Pavia/Pisa

* x5 safety factor	Spatial resolution	<10 µm 25-100 ns				
	Time resolution / trigger rate					
	Trigger rate / delay	30 kHz / 5-10 µs				
	Hit rate* (inner layer)	<150 MHz/cm ²				
	Material budget / layer	0.1 to 0.5 % X ₀ <100 - 200 mW/cm ² room temperature ~ 10 ¹⁴ n _{eq} /cm ²				
	Power dissipation					
	Operation temperature					
	Radiation* (non-ionizing)					
	Radiation* (ionizing)	<1 MGy				

- Technology Tower-180 nm
- Modified process for full-depletion
- Full scale sensor 2x2 cm2 fabricated in 2021
- Pixel matrix 512x512 with 33x22 μm^2 pitch
- Time resolution 25 ns
- Power dissipation 200 mW/cm²
- ENC, pixel 17 e-, FPN 5 e- (measured)
- Threshold 150 e- (measured)

Next step: full-size proto. OBELIX-1 to be submitted in 2022

- Enlarge matrix size to 30 x 20 µm2
- Possibly increase pixel pitch up to 35-40 μm
- End-Of-Column logic adapted to Belle II trigger

CE-65 & stitching - Context

<u>Technology switch every 10 years</u>

- STAR-PXL built from 350nm process, R&D started ~2001
- ALICE-ITS2 built from 180 nm process, R&D started ~2011
- <u>Stitching as a way to the "ultimate thinness"</u>
 - Sensor area $30x10 \text{ cm}^2$ to reach 0.05% X_0 /cylindric layer => cf M.Mager talk today

Tower-65nm process

• Some details 🚽

- Accessed to TPSCo Foundry (Japan) through CERN for large international consortium (included also in AIDAinnova, Cremlin+)
- Triggered by CERN EP R&D program, ALICE and ATLAS experiments
 - Firs application: ALICE-ITS3 (ALICE-PUBLIC-2018-013) for LHC-long shutdown 3
 - Obvious synergies with Higgs Factories requirements
 - 2" wafers

 - Very thin epitaxial layer
 Doping profile optimised
 Modified process (deep N-well blanket) possible

- smaller in pitch (< 20 μ m) with HEP-useful hit-rates (>50 MHz/cm²)
- Time resolution down tp 10 ps range
- Higher radiation tolerance (> 10¹⁵ n_{eq}/cm²)
 Lower power dissipation

=> 2020 : 65 nm

First submission in Tower 65 nm

• MLR run January 2021 (1.5x1.5 mm² dies)

- CERN amplifier), digital pixel test matrix (DPTS) (32x32), pad structure for assembly testing.
 - After final GDS placement, GDS1 is instantiated twice.

Back late Spring 2021 => First test results are arriving ... promising but too early !

CE-65 sensors

Small pixel matrices

- Target: charge collection properties
- Parameter space exploration
 - Pitch 15 & 25 µm
 - Front-ends: source-follower / amplifier
 - Collection diode with
 - Standard and optimised process

64x32 pixels

15 µm pitch

Variant D 48x32 pixels 25 µm pitch

Additional circuits

- DAC (already validated)
- Ring-oscillators from CPPM allowing radiation tolerance assessment

Preparing large stitched sensor

- Engineering run Q1 2022 in Tower-65 nm
- Pixel pitch 18 / 23 μm to be confirmed

MOSS Concept

٠

(From G. Aglieri Rinella)

- Implement a large sensor abutting identical but functionally independent sub-units
 - Repeated Sensor Unit, Endcap Left, Endcap Right
 - Stitching used to connect metal traces for power distribution and long range on-chip interconnect busses for control and data readout

To conclude

• Strong MAPS activities in France with growing interest

- Dedicated core facility: C4Pi in Strasbourg
- Main R&D lines
 - Granular & thin sensors
 Factories

=> CBM-MVD, ALICE-ITS3, Higgs

- High rate & radiation tolerant sensors => Belle II-VTX
- Time resolution

=> targeting ~50 ps

2 mil 10 miles

Technologies

- Process under control: Tower 180 nm, LF 150 nm
- Process under exploration: Tower 65 nm (also LAPIS-200 nm)
- Skills under exploration: stitching

Thank you for your attention...

bonus slides start here

State-of-the-art / I

	STAR PXL	ALICE ITS2	HL-ATLAS ITK	CBM MVD	ALICE ITS3	Belle-II Lnom	ILC VTX	FCCee VTX	CLIC SiTrack	FCChh SiTrack
Position res. (µm)	< 10	~5	10	~5	~5	< 10	≲3	3 – 5	7	~10
Mat. budget (%X0)	0.37	0.35	<]	~0,3	0.05	0.15	0.15	0.15	~1	~2
Hit rate (MHz/cm²)	O(0.1)	O(1)	200	15-70	2x better / ITS2	100	20	O(20)	O(0.1)	
Time figure (ns)	200.10 ³	5.10 ³	25	5.10 ³		~100	102-104	10 ² -10 ³	5	5x10 ⁻³
Rad.hard. (kGy) (n _{eq} /cm²)	2 10 ¹²	30 2x10 ¹³	800 10 ¹⁵	30 /year < 10 ¹⁴ /y.		100 5x10 ¹³	10 < 10 ¹²	20 5x10 ¹¹	< 10 < 10 ¹²	100 5x10 ¹⁵
Sensor	MIMOSA 28	ALPIDE	MONOPIX MALTA	MIMOSIS	R&D MOSS	R&D OBELIX	R&D		R&D CLICtd	
Techno (nm)	350	180	180 (150) modif.	180 modif.	65	180	180 / 65		180	
Pixel pitch (µm²)	20x20	28x28	33x33 36x36	27x30	target stitching	< 40x40	target 17x17		30x300	
Power (mW/cm ²)	150	45	O(200)	< 55		target ~100	~3 Pow.Puls			

MIMOSIS details

Scientific requirements: ILC - VTX

CEPC / FCCee

- Many similarities with ILC
 ~ hit rates
 - granularity, mat.budget, rad.tol.
- Main difference: time structure

Need to control power without power pulsing

ILC – PSIRA, proposal by IPHC

For Vertexing & SiTracker

- Evolution of MIMOSIS
 - Hit-rate already demonstrated
 - Power pulsing to reach ~ 20 mW/cm²
- Position resolution < $3 \, \mu m$
 - In 180 nm process: double-sided layers $4\mu m/\sqrt{2}$
 - In 65 nm process: pitch 18x18 µm²
- Integration time \lesssim 1 μs
 - Slight acceleration of MIMOSIS: OK
 - Bunch tagging closer to 300 ns:
 - => doable but impact on power under study

Position resolution

MAINLY from the MIMOSA series designed in Strasbourg with thin non-depleted sensitive layers

- Position derived from charge centroid
 - charge = 1 for binary output
- Resolution here = standard deviation of residuals = true – reconstructed pos.
 - For imaging ~ stdev of PSF

Key parameters

- Pixel pitch
- Charge digit precision
- Threshold for fired pixel detection
- Charge sharing, driven by $\sqrt{2D \frac{\text{distance}}{\text{velocity}}}$
 - Sensitive thickness (distance)
 - Level of depletion (velocity & distance)

Position resolution

