

Vertex detector at Belle II: present & future

Katsuro Nakamura Nov 8, 2021 2021 International Workshop on the High Energy Circular Electron Positron Collider

1

Present Vertex Detector in Belle II: Pixel detector (PXD) and Strip detector (SVD)

Vertex Detector at Belle II Experiment

Belle II experiment at SuperKEKB collider

- Luminosity-frontier experiment, exploring new physics beyond the standard model
- Asymmetric e^+-e^- collisions at $\sqrt{s} = 10.58$ GeV
 - Target integrated luminosity: 50 ab⁻¹
 - Target instantaneous luminosity: $L \sim 6 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$
- Operated with the vertex detector since 2019

Vertex detector (VXD) in Belle II

- Inner 2 layers: PiXel Detector (PXD)
 - DEPFET sensor
- Outer 4 layers: Silicon Vertex Detector (SVD)
 - Double-sided silicon strip (DSSD) sensor
- Roles of VXD
 - Determine the vertex position
 - Standalone tracking
 - PID using SVD dE/dx for low p_T tracks

CEPC2021

PXD: Detector Structure and Specification

2 layers of DEPFET sensors

- 1st layer: 8 ladders at R=14mm
- 2nd layer: 12 ladders at R=22mm, but only 2 ladders installed now
- -7.7×10^{6} pixels in total
- about 0.21% X₀ per layer

PXD readout

- Rolling shutter readout mode
- Full integration time: about 20 µs

PXD modules and ladders

- Module: DEPFET sensors + ASICSs
 - 6× switchers: row control, 4 rows per channel
 - 4× DCD: 256 channels 8-bit ADC
 - $4 \times$ DHP: data processing, trigger, and timing
- Ladder: Two modules glued to one ladder

PXD: Performance

CEPC2021

Signal and Noise

- Most Probable Values (MPV) of cluster charge uniform in each module
- Low noise < 1 ADU ~ 200 e⁻: homogeneous in each module
- Signal-to-Noise Ratio (SNR) ranges from 30 to 50

Hit efficiency

11/8/2021

- About 99% in good regions
- Bad switcher channels mostly due to large beam losses
 - They degrade overall hit efficiency by about 3%.
 - One damaged switcher since May 10, 2021 also due to large beam loss.
- One module broken from the beginning
 - The acceptance covered by the 2nd layer

SVD: Detector Concept

nm

þ310

DSSD sensors

- pitches of barrel sensors – <u>Readout strip pitch (P/N)</u>: 50μm/160μm for Layer-3, 75μm/240μm for Layer-4,5,6
 - floating strips between two adjacent readout strips
- <u>Thickness</u>: 300-320µm
- In total: 172 sensors, 1.2m² sensor area, and 224k readout strips

Front-end ASIC: APV25 chip

- Originally developed for CMS Si tracker
- Fast: 50 ns shaping time
- Radiation hardness: > 1 MGy
- 128 channel inputs
- Power consumption: 0.4 W/chip \rightarrow 700W in total (1748 chips)

Chip-on-sensor concept

- Shorter signal propagation length \rightarrow smaller capacitance and noise
- Thinned to 100 µm thickness to reduce material budget
- Cooling on-side with bi-phase -20 $^{\circ}$ C CO₂

SVD: Signal and Noise

Cluster Charge (normalized by path length)

All 172 sensor have good SNR with MPV between 13 and 30.

Equivalent Noise Charge	(ENC) (before	(before irradiation)	
Sensor position/type	u/P side ENC (e^{-})	v/N side ENC (e^{-})	
Layer 3 (HPK small)	930	630	
Layer 4/5/6 Origami (HPK large)	958	510	
Layer 4/5/6 BWD (HPK large)	790	680	
Layer 4/5/6 FWD (Micron wedge)	740	640	

Larger noise in u/P due to longer strip length = larger interstrip capacitance.

SVD: Particle Detection Performance

8

Vertex Detector Resolution

- Excellent vertex resolution
 - Measured d0/z0 resolution of about 12μm/15μm
 - by beam profile measurement using Bhabha events
 - Good agreement with MC expectation
- D lifetime measurement arXiv:2108.03216
 - Vertex determination plays a key role in the lifetime measurement
 - Belle II time resolution better than Belle/BaBar by factor about 2
 - World's most precise D lifetime measurements

CEPC2021

Future Vertex Detector in Belle II: VXD Upgrade Project

Limits on current VXD and VXD upgrade

- Difficulty of accurate prediction for injection BG and collimator condition at design luminosity 🐵
- Drastic change in beam optics for design luminosity \rightarrow large uncertainty \otimes ($\beta_y^* = 1.0$ mm $\rightarrow 0.3$ mm)

Predicted BG within limits, BUT without enough safety margin

Tracking and vertexing performance

- Tracking performance in low-p_t limited by material budget
- Room to improve vertex resolution with better hit position resolution
- Improvement in $K_{\rm S}$ vertexing desirable

Improvement in tracking and vertexing performance highly desirable

→ Belle II VXD upgrade project formed

Several technology options under investigation by R&D subgroups

- Thin DSSD sensor
- Upgraded DEPFET sensor
- SOI pixel sensor
- CMOS pixel sensor

Timescale of the VXD upgrade project

Occasion of new VXD installation: 2nd long shutdown for SuperKEKB intermediate upgrade

- Timeframe expected to be 2026-2027, but still with uncertainty
 - Detailed SuperKEKB upgrade plans are under discussion with the international taskforce teams
- Preparation to be done in several years → Currently available technologies preferable

R&D activities will access the options

- Which concepts bring best performance?
- Which technology fit requirements?
- Which technology fit timeframe of installation?
- CDR to be prepared within ~1 year w/ full-scale prototype test and physics benchmarking

SuperKEKB/Belle II operation projection

Upgrade R&D (1): Thin DSSD sensor

Thin/fine-pitch SVD (TFP-SVD) concept

Targets

- Outer layers
- Handle higher hit-rate
 - O(1MHz/cm²) R>4cm
- Improve tracking/K_s vertexing performance

Thin DSSD sensor (Micron) Thinner sensor: 140um Finer N-side strip pitches than SVD: ~85um Develop new front-end ASIC (SNAP128A)

\rightarrow R&D challenges in front-end

- Small noise : ~640e⁻ @ C_{det}=12pF (simulation)
- Small heat dissipation: ~330mW
- Short signal pulse width : ~60us
- Basic characterization of prototype sensors
 - Reasonable I-V and C-V curves
 - Thickness: 148±5um
 - Full depletion voltage: 14±1 V
- Performance evaluation of prototype ASIC on going

TFP-SVD DSSD layout

Upgrade R&D (2): SOI pixel sensor

Test pulse

(Capacitive input)

Silicon-On-Insulator pixel (SOIPIX)

- CMOS circuit produced on silicon wafer isolated by a buried oxide (BOX) layer
 - Full depleted sensor: Fast signal, good S/N
 - Logics w/o well structure: High density, small capacitance
 - Complex circuit can be implemented in each pixel
- Produced by LAPIS semiconductor

Dual Timer Pixel (DuTiP) concept

- Alternative operation of two timers allows the next hit before the trigger arrival for the previous hit.
 - Hit loss probability due to pile-up expected to be ~0.03% at 113MHz/cm² (assuming 8us trigger latency)

Rough estimation of final power consumption: about 0.1 W/cm²

Upgrade R&D (2): SOI pixel sensor

DuTiP 1st prototype

Chip size	6x6 mm ²	
Pixel size	e 45x45 μm²	
Thickness	50 μm ^(*)	
Clock	Clock 15.9 MHz (63ns)	
Expected noise	about 86 e ⁻	
(*) chip to be thinned to 50um in future		

Circuits already fabricated

- Modified ALPIDE (low power) analog circuit
- Basic in-pixel digital circuit
- Circuits still to be fabricated
 - Sophisticated pixel scanning circuit

Pixel layout

DuTiP 1st prototype

CEPC2021

Sensor evaluation board

Prototype performance evaluation on-going

digital part working as expected
 Beam test to be performed

DuTiP 2nd prototype plan

Plan to submit by the end of 2021 (depends on MPW schedule)

- Full functionality
- Semi-final chip size

Upgrade R&D (3): CMOS pixel sensors

Upgrade R&D (3): CMOS pixel sensors

0

TJ-Monopix1

- Characterization started in 2018
- Noise, threshold, gain, hit efficiency, and radiation hardness

TJ-Monopix2

- Chip size: 2x2 cm² Chip is alive and working
- Synchronization, configuration, DACs
- Analog pixels respond to injection
- Chip detects radiation

Analysis of beam test data on-going

Specification

2x2 cm ² (512x512 pix)	
$33.04\times33.04~\mu m^2$	
170 mW/cm ²	
< 8 e ⁻ (improved FE)	
7-bit	
< 10 e ⁻ rms (improved FE + tuning)	
< 200 e ⁻	
< 250 - 300 e ⁻	
> 97 %	
> 99 %	

Proof-of-principle prototype

CEPC2021

Summary and Outlook

Present Vertex Detector in Belle II

Belle II VXD consists of PXD and SVD, and they are working well since 2019

- PXD: DEPFET pixel sensor
- SVD: DSSD strip sensor

Excellent performance of VXD confirmed

Future Vertex Detector in Belle II

- Upgrade of Belle II VXD is desirable
- Several technology R&D on-going to assess the performance and integration feasibility
 - Thin DSSD sensor
 - Upgraded DEPFET pixel sensor
 - SOI pixel sensor
 - CMOS pixel sensor

Steady progress: prototype delivered and performance evaluation started

Thank you for your attention

PXD: DEPFET Sensor

Layer-5

Layer-4

Layer-3

interaction point

Laver-6

SVD

e⁺beam

SVD: Double-side Silicon Strip Detector

AC-coupled strips on N-type substrate Full depletion voltage: 20-60V **Operation voltage: 100V**

ф310 e=beam____ 935 mm

SVD DSSD sensors

mm

	Small sensors	Large sensors	Trapezoidal sensors
Readout strips P-side	768	768	768
Readout strips N-side	768	512	512
Readout pitch <i>P</i> -side $(r\phi)$	$50 \ \mu m$	$75 \ \mu m$	$50 - 75 \ \mu m$
Readout pitch N-side (Z)	160 µm	240 µm	240 µm
Sensor thickness	320 µm	$320 \ \mu m$	300 µm
Manufacturer	Hamamatsu	Hamamatsu	Micron

one intermediate floating strip between two readout strips

In total: 172 sensors, 1.2m² sensor area, and 224k readout strips

Large Rectangular sensor

11/8/2021

Beam Background and SVD Hit Occupancy

Beam BG and SVD hit occupancy

- Beam BG irradiating SVD increases hit occupancy
- Large hit occupancy degrades SVD tracking performance. Present limit is 2-3% in layer-3.
- With future BG rejection based on hit-timing cut, this limit can be relaxed by a factor of about 2.
- Beam BG level during operation under control at present
 - Averaged hit occupancy in layer-3 is < 0.5%
 - Very few exceptions with bad beam-injection BG which cannot be vetoed properly.
- Projection of hit occupancy at L = 8.0 x 10³⁵ cm⁻²s⁻¹ is about 4% in layer-3.
 - estimated by MC scaled with data/MC ratio
 - Corresponding to dose of ~300 krad/smy, and equiv. neutron fluence of ~4.5x10¹¹ n_{eq}/cm²/smy
 - smy: snow-mass-year = 10⁷ sec

SVD beam BG projection at L = $8.0 \times 10^{35} \text{ cm}^{-2}\text{s}^{-1}$

Effects from integrated dose on SVD are discussed in next slides.

SVD Integrated Dose

Integrated dose in SVD Layers

SVD dose estimated by dose on diamond sensors: 140krad in Layer-3 mid plane

- applying measured ratio between SVD and diamond doses,
- large uncertainty: to be updated with new measurement of correlation to diamonds
- I-MeV equivalent neutron fluence also evaluated: 2.1x10¹¹ n_{eq}/cm²

– applying a ratio n_{eq} /dose obtained from MC, 1.5x10¹² n_{eq} /cm² / 1Mrad

SVD Leakage Current Evolution

 Good linear correlation between leakage current and estimated dose: nominal slope of about 1-2 µA/cm²/Mrad

– Results are same order of the BaBar measurement (~1 μA/cm²/Mrad @ 2Qucl Chestrum. Meth. A 729 (2013) 615

- Width of the slope distributions due to temperature effects and dose spread among sensors in layer (avg. dose in layer used for all sensors)
- Even after 10Mrad irradiation, leakage current will not significantly affect strip noise.

- noise dominated by sensor capacitance because of short shaping time (50ns) in APV25

VXD Operation in Belle II

Successful VXD operation at present Improved vertexing performance under continuous beam injections confirmed by D lifetime measurement to keep constant beam currents Resulting time resolution in Belle II is max.25Hz injection to each beam better than Belle/BaBar by factor about 2 10µs revolution time **SuperKEKB** arXiv:2108.03216 ~3km circumference) Belle T 10^{3} 2 bunches **Belle II** Every injection induces per injection (100ns spacing) beam BG on detector. Belle $D^0 \to K\pi$ \rightarrow short integration time or gated-mode operation required ntegrated luminosity Recorded Weekly BABAR osity [fb⁻¹] $\int \mathcal{L}_{Recorded} dt = 213.49 \, [\text{fb}^{-1}]$ 2021 10 2020 So far, **Fotal integrated Weekly lu** 2019 213 fb-1 accumulated Recorded peak luminosity: D^0 decay time [10⁻¹² s] 50 t [ps] 3.12x10³⁴ cm⁻²s⁻¹ 2 World's most precise D lifetime measurements time 11/8/2021

CEPC2021

Limits on current VXD and VXD upgrade

Tolerance for beam-induced background (BG)

- SVD limit will be relaxed by hit-time BG rejection ☺
- Difficulty of accurate prediction for injection BG and collimator condition at design luminosity ☺
- Drastic change in beam optics for design luminosity \rightarrow large uncertainty \otimes ($\beta_y^* = 1.0$ mm $\rightarrow 0.3$ mm) No big margin...

Tracking and vertexing performance

- Tracking performance in low-p_t limited by material budget
- Room to improve vertex resolution with better hit position resolution
- Improvement in $K_{\rm S}$ vertexing desirable

Latency of Level-1 trigger

 Belle II trigger latency is limited to 5.0µs by SVD (depth of APV25 ring-buffer)

So in summary,

- Predicted BG within limits, BUT without enough safety margin
- Also performance improvement highly desirable

Timescale of the VXD upgrade project

2nd long shutdown for SuperKEKB intermediate upgrade

- Timeframe expected to be 2026-2027, but still with uncertainty
 - Detailed SuperKEKB upgrade plans are under discussion with the international taskforce teams.
- Opportunity for large upgrades of Belle II subdetectors
- Preparation to be done in several years
 → Currently available technologies preferable

Target of on-going VXD upgrade project

SuperKEKB/Belle II operation projection

Requirements for the VXD upgrade

Requirements

Radius range: R	14 – 135 mm ^(**)			
Tracking & Vertexing performance at least as good as current VXD				
Single point resolution ^(*)	< 15 um			
Total material budget	< (2x 0.2% + 4x 0.7%) X ₀			
Robustness against radiation environment current extrapolation with safety factor x5				
Hit rate ^(*)	~ 120 MHz/cm ²			
Total Ionizing Dose ^(*)	~ 10 Mrad/year			
NIEL fluence ^(*)	$\sim 5.0 \times 10^{13} \text{ n}_{eq}/\text{cm}^2/\text{year}$			

(*) requirement for the innermost layer (R=14mm)

(**) Optionally, we may include also the CDC inner region (135<R<240mm)

Required hit rate tolerance vs. Radius

Possible other improvements by upgrade

- Impact parameter resolution
- Tracking performance for low- p_{T} tracks
- Longer trigger latency
- Capability of Level-1 trigger creation

Strategy of upgrade R&D

Several technology options under investigation by R&D subgroups

- R&D activities will access the options
 - Which concepts bring best performance?
 - Which technology fit requirements?
 - Which technology fit timeframe of installation?
- $\scriptstyle \bullet$ CDR to be prepared within ${\sim}1$ year w/ full-scale prototype test and physics benchmarking
 - and then TDR (w/ full technical description) as well

R&D subgroup (1): Thin DSSD sensor

Thin/fine-pitch SVD (TFP-SVD) concept

Targets

Outer layers

Handle higher hit-rate

Improve tracking/K_s

vertexing performance

• O(1MHz/cm²) R>4cm

- Thin DSSD sensor
- Thinner sensor: 140um
 - Produced by Micron

Finer N-side strip pitches than SVD: ~85um

 \rightarrow R&D challenges in front-end

- Noise (smaller signal)
- Heat dissipation (larger # of channels)

Dedicated front-end ASIC (SNAP128A)

- 180nm CMOS process by Silterra
- Short signal pulse width: ~55ns (simulation)
- Better noise characteristic and less power consumption than SVD
 - simulated noise:

 $\sim 640e^{-}$ @ C_{det}=12pF

- Binary hit readout
 - to reduce cables

TFP-SVD DSSD layout

R&D subgroup (1): Thin DSSD sensor

Sensor dimension

Sensor thickness

P-side strip pitch

P-side strip width

P-side # of strips

N-side strip pitch

N-side strip width

N-side # of strips

P-side floating string

Active area

DSSD 1st prototype

- Three prototype sensors delivered Basic characterization in Micron
 - Reasonable I-V and C-V results
 - Thickness: 148±5um
 - Full depletion voltage: 14+1 V

Specification of prototype ver.1

Junction (P-side) strip

Ohmic (N-side) strip

52.6 mm x 59.0 mm (rectangle)

51.2 mm x 57.6 mm

 $140 \text{ um} \pm 10 \text{ um}$

50 um

14 um

1024

no floating strip

75 um

14 um

768

SNAP128A: 1st prototype

- All necessary functions both analog and digital integrated
- SNAP128A

- Being tested in KEK
- Amp/shaping part and digital part working
 - Reasonable power consumption: 329mW

SNAP128A test board

To be assembled with DSSD to evaluate detector performance in early 2022

11/8/2021

Upgrade R&D (2): DEPFET pixel sensor

Current Belle II PXD

- First use of the technology in HEP experiment
- Current integration time: 20 μ s

Sensor R&D

- Gain increase with shorter FET length L
 - higher amplification in pixel → thinner oxide
 → improved radiation tolerance
- Extend Cu interconnection layer into pixel array
 - improve the signal integrity of fast signals (e.g. "clear" and "gate")

ASIC R&D

- Faster driving and readout circuit
 - Integration speed x2

More aggressive option

- Rotate readout direction of pixel array by 90°
 - Additional improve on integration speed x3

Switcher

 $dI_{drain} \propto$

 $\frac{t_{\text{OX}}}{t_{\text{OX}}}$

VTX: An integrated design for fully pixelated option

General concept of VTX

- Fully pixelated detector with CMOS sensors
 - Chip size: 2x3 cm² (same chip in all layers)
- Low material budget:
 - sensor thickness ~50 μ m
 - $0.1\%X_0$ (L1-2) / $0.3\%X_0$ (L3-4) / 0.8% X₀ (L5) per layer
- Different integration among inner (L1-2), middle (L3-4), and outer (L5) layers
 - inner: Self supportive silicon ladders, w/ air cooling
 - mid, outer: CF support frame, w/ water cooling

L5 ladder structure

Flex Circuit(s)

Simulated VTX Performance

- VTX performance simulation with Belle II analysis framework
 - Connect to the existing outer-detector tracking
 - Realistic beam backgrounds with accurate Geant4 geometry

Realistic pixel sensor model implemented

- 30 μm depletion layer
- $-33x33 \mu m^2$ pixels with 7-bit ToT
- tuned with TJ-Monopix1 beam test data

CEPC2021

0.015 0.01 0.005

20

40

60

80

100

120 cluster charge ToT

Estimated material budget of VTX

Very simple detector design, but realistic material budget:

- 0.1% X0 (inner layers) + 0.3% X0 (outer layers)
 - 5 layers VTX: L1-2 inner + L3-5 outer, 7 layers VTX: L1-3 inner + L4-7 outer
- Only barrel layers (no disk sensors in forward)