CEPC Detector R&D Progress

Jianbei Liu

for the CEPC Physics and Detector Working Group

State Key Laboratory of Particle Detection and Electronics, China University of Science and Technology of China

The 2021 International CEPC Workshop Nanjing (Online) November 8, 2021

Outline

- Detector concepts in CDR
- R&D for the CDR detectors
- The forth detector concept: more physics requirements and motivations
- Mechanical design
- Challenges from enhanced collider luminosities
- Summary

Many slides are courtesy of Joao and Jianchun

CEPC Detector Concepts

Baseline: PFA approach (derived from ILD)

Silicon + TPC + PFA-ECAL&HCAL + Solenoid (2/3T) + Muon

Alternative: IDEA (low magnetic field)

Silicon + Drift Chamber + Solenoid(2T) + Dual-readout calorimeter + Muon

Three detector concepts in CDR

- PFA with TPC
- PFA with full silicon
- IDEA with DRC

CMOS Pixel Sensors

JadePix4

Taichupix1 Taichupix2

Full-size Taichupix

Chip size: 5 mm × 5 mm Pixel size: 25 µm × 25 µm

1024*512 pixel array, FE-I3-like

High speed, deadtime~50ns@40MHz, time stamp precision 25/50ns

Beam test

Laser test

Radiation test

TaichuPix-2 exposed to 6 keV X-ray up to 2.5 Mrad and beyond

Vertex Detector

Vertex detector layout optimization

Vertex detector ladder design

New idea: inter-chip connection

Vertex detector prototype

Engineering design and tooling design for assembling

Air cooling testing

Maxt	emperature of	ladder (°C)	(air tempe	rature 5 °C)	
Air sp (r Power Dissipation (mW/cm2)	eed 5	4	3	2	1
100	19.6	21.8	25.0	30.6	43.4
150	26.9	30.1	35	43.4	62.6
200	34:2	38.6	45.1	56.2	81.8

Silicon Tracker

Silicon tracker layout optimization and structure design

A big international effort

Australia

University of Adelaide

China

- · Harbin Institute of Technology
- Institute of High Energy Physics, CAS
- · Northwestern Polytechnical University
- · Shandong University
- T. D. Lee Institute Shanghai Jiao Tong University
- University of Science and Technology of China
- · University of South China
- Zhejiang University

Germany

Karlsruhe Institute für Technologie

Italy

- INFN Sezione di Milano, Università degli Studi di Milano e Università degli Studi dell'Insubria
- · INFN Sezione die Pisa e Università di Pisa
- INFN Sezione di Torino e Università degli Studi di Torino

- 116

- Lancaster University
- · Queen Mary University of London
- STFC Daresbury Laboratory
- · STFC Rutherford Appleton Laboratory
- · University of Bristol
- . University of Edinburg
- University of Liverpool
- University of Oxford
- · University of Sheffield
- · University of Warwick

- o Smaller pixel size (25μm) in φ direction
- Lower capacitance
- o Amplifier and comparator design
- o Electronics in pixel or periphery
- o Daisy chain of readout

55 nm HV-CMOS

A Chinese foundry

TPC Tracker

A 50cm-long TPC prototype read out with GEM+MM was developed

Tested with UV laser

Low power readout ASIC chip developed with 65 nm CMOS process. 16 chs/chip, 2mW/ch

PFA ECAL Prototype

16 super-layers with each super-layer consisting of 2 EBUs and 2 tungsten layers.

➤ The total radiation length ~ 23.4 X₀

Scintillator strips (45mm*5mm*2mm) are arranged in alternating orthogonal layers and read out with SiPM

> 210 channels per EBU

> 12 fans at two ends for air cooling

Beam test at IHEP

Cosmic-ray test
muon

so

so

x typing 50 -100100 50 -Quantiloo

PFA HCAL

A full-size AHCAL prototype is being built

Scintillator tiles production and quality control

Readout board development

RPC-SDHCAL

Dual Readout Calorimeter

International collaboration has been formed

Bucatini DRC Prototype

Korea DRC Prototype

Primary goal: build a prototype detector for the detector design of CEPC experiment

- 5 year (2020.Mar. 2025.Feb.) R&D funding supported by Korea NRF (\$~0.4M/year, total \$~2M for 5 years) => 2nd year in this program
- · Contain almost (97.5%) full hadronic shower energy
- · Demonstrate engineering aspects for full geometry detector

· Secondary goal: train next generations as experts of the (DRC) detector

WE ARE HERE

 2017-9
 2020-1
 2022-5
 TBD

 Design
 R&D
 Prototype
 Production

Stage	Торіс
Design	Propose a design of Dual-Readout Calorimeter to IDEA detector concept
R&D	Perform R&D (including engineering aspects) based on HW & SW
Prototype	Build 4x4 detector and perform test beams
Production	TBD

Prototype Detector (2025)

Muon Detector

Option1 : scintillator strips + SiPM

Option 2: uRWELL MPGD technology

More Physics Requirements

Detector performance requirements in CDR

Physics process	Measurands	Detector subsystem	Performance requirement
$ZH, Z \rightarrow e^+e^-, \mu^+\mu^-$ $H \rightarrow \mu^+\mu^-$	$m_H, \sigma(ZH) \ { m BR}(H o \mu^+\mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV})\sin^{3/2}\theta}$
$H o b ar{b}/car{c}/gg$	${ m BR}(H o bar b/car c/gg)$	Vertex	$\sigma_{r\phi} = 5 \oplus \frac{10}{p({ m GeV}) imes { m in}^{3/2} heta} (\mu { m m})$
$H \to q\bar{q}, WW^*, ZZ^*$	${\sf BR}(H o qar q,WW^*,ZZ^*)$	ECAL HCAL	$\sigma_E^{ extsf{jet}}/E = 3 \sim 4\%$ at $100~{ m GeV}$
$H o \gamma \gamma$	${\rm BR}(H\to\gamma\gamma)$	ECAL	$\Delta E/E = rac{0.20}{\sqrt{E({ m GeV})}} \oplus 0.01$

Good EM energy resolution is required for bremsstrahlung radiation recovery

EWK physics:
Precise EM measurement

Flavor physics:
Precise EM measurement
Dedicated hadron identification

The 4th Detector Concept

Drift Chamber

Cell size: 1cm ×1cm, Gas mixture: 90% He + 10% iC4H10 Sampling frequency: 2GHz

Elements being optimized

- · Cell size, number of layers
- Working gas (drift velocity, primary ionization)
- Sampling frequency

Drift Chamber

Low-mass cylindrical drift chamber · Length: 4 m • Spatial resolution: < 100 μm Follows design of the KLOE Radius: 0.35- 2m · Max drift time: ~350 nsec and MEG2 experiments Gas: 90%He – 10%iC₄H₁₀ Cells: 56.448 Material: 1.6% X₀ (barrel) Layers: $14 SL \times 8$ layers = 112Cell size: 12 - 14 mm New DAQ board: dual channel Front-end ASIC increase resolution and signal-to-noise ratio a two stage amplifier for cluster counting/timing improve peak finding algorithm response to two electrons 1:1 (same amplitude) separated by 2.5 ns AD9689 - 2000EBZ (dual channel KCU105 Evaluation Kit

IDEA drift chamber

- A lot of synergy between IDEA and 4th Concept on the drift chamber
- Collaboration on drift chamber and tracking

Crystal ECAL

· A crystal bar ECAL

- Homogeneous BGO crystal.
- Bar size ~40×1×1 cm³, time measurements at two ends for position along the bar.
- Crossed arrangement in adjacent layers. Two layers form a super cell module: ~40×40×2 cm³.
- Reduce readout channels, minimize dead materials.

Key issues:

- Ambiguity caused by 2D measurements (ghost hit).
- Identification of energy deposits from individual particles (confusion).

· Ongoing work:

- Use ArborPFA software & crystal cubes of 1 cm³ in size to study PFA performance, compare with SiW ECAL.
- Develop a proto-PFA new software that has separation capability of multiple incident particles.
- Bench test of crystal bars.

Reconstruction

PFA performance

Scintillator Glass HCAL

Sample nos.	Molar compositions	Density (g/cm ³)	Radiation length (cm)	Integrated light yield (% of BGO)
S0	20SiO ₂ -35B ₂ O ₃ -15BaF ₂ -15Lu ₂ O ₃ -15Gd ₂ O ₃	5.6		=
S1	20SiO ₂ -38B ₂ O ₃ -15BaF ₂ -15Lu ₂ O ₃ -10Gd ₂ O ₃ -2CeF ₃	5.2	1.81	54
S2	20SiO ₂ -33B ₂ O ₃ -15BaF ₂ -15Lu ₂ O ₃ -15Gd ₂ O ₃ -2CeF ₃	5.6	1.67	87
S3	20SiO ₂ -28B ₂ O ₃ -15BaF ₂ -15Lu ₂ O ₃ -20Gd ₂ O ₃ -2CeF ₃	6.0	1.56	58
S4	$20SiO_2 - 38B_2O_3 - 15BaF_2 - 10Lu_2O_3 - 15Gd_2O_3 - 2CeF_3$	5.1	1.89	81
S5	20SiO ₂ -28B ₂ O ₃ -15BaF ₂ -20Lu ₂ O ₃ -15Gd ₂ O ₃ -2CeF ₃	6.2	1.48	86

Varying thickness of Steel

Varying thickness of ScintGlass

Mechanical Design

A detector layout in the Mechanics Workshop 2020 by Quan Ji (IHEP)

A new detector layout in the <u>Yangzhou Joint Workshop 2021</u> by Quan Ji (IHEP)

https://indico.ihep.ac.cn/event/14392/other-view?view=standard

CEPC Luminosity Enhancement

	Higgs	W	Z (3T)	Z (2T)	
Number of IPs		2			
Beam energy (GeV)	120 80		45.5		
Circumference (km)	100				
Synchrotron radiation	1.73	0.34	0	036	
loss/turn (GeV)	1.75	35,050,000		030	
Crossing angle at IP (mrad)		16.5 ×			
Piwinski angle	3.48	7.0	2	3.8	
Particles /bunch Ne (1010)	15.0	12.0	8	3.0	
Bunch number	242	1524	12000 (10% gap)	
Bunch spacing (ns)	680	210		25	
Beam current (mA)	17.4	87.9	40	51.0	
Synch. radiation power (MW)	30	30	1	6.5	
Bending radius (km)		10.7	•		
Momentum compaction (10 ⁻⁵)		1.11			
β function at IP $\beta_x * / \beta_y *$ (m)	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001	
Emittance x/y (nm)	1.21/0.0024	0.54/0.0016	0.18/0.004	0.18/0.0016	
Beam size at IP σ _x /σ _y (μm)	20.9/0.06	13.9/0.049	6.0/0.078	6.0/0.04	
Beam-beam parameters &/&	0.018/0.109	0.013/0.123	0.004/0.06	0.004/0.079	
RF voltage $V_{RF}(GV)$	2.17	0.47	0	.10	
RF frequency fre (MHz)		650			
Harmonic number		21681	6		
Natural bunch length $\sigma_{\!\scriptscriptstyle E} (\mathrm{mm})$	2.72	2.98	acidn		
Bunch length σ_i (mm)	4.4		ביכפר		
Damping time $\tau_x/\tau_y/\tau_E$ (ms)	AF	dine '	549.5/84	19.5/425.0	
Natural Chromaticity	n Ras	.101	-491/-1161	-513/-1594	
Betatro	KD	363.10 / 30	55.22		
2018	0.065	0.040	0.	028	
Harmonic number Natural bunch length σ_c (num) Bunch length σ_c (num) Damping time τ_{d} τ_{d} τ_{d} (τ_{d}) Natural Chromaticity Betatro 18 LO 2018 LO 20	0.46	0.75	1	.94	
Natural energy spread (%)	0.100	0.066	0.038		
Energy spread (%)	0.134	0.098	0.080		
Energy acceptance			52.00		
requirement (%)	1.35	0.90	0.49		
Energy acceptance by RF (%)	2.06	1.47	1.70		
Photon number due to beamstrahlung	0.082	0.050	0.023		
Beamstruhlung lifetime /quantum lifetime† (min)	80/80	>400			
Lifetime (hour)	0.43	1.4	4.6	2.5	
F (hour glass)	0.80	0.94		.99	

Number of Ips		2				
Circumference [km]		100.	0			
SR power per beam [MW]		30				
Half crossing angle at IP [mrad]		16.5				
Bending radius [km]		10.7	7			
Energy [GeV]	180	120	80	45.5		
Energy loss per turn [GeV]	9.1	1.8	0.357	0.037		
Piwinski angle	1.21	5.94	6.08	24.68		
Bunch number	35	249	1297	11951		
Bunch population [10^10]	20	14	13.5	14		
Beam current [mA]	3.3	16.7	84.1	803.5		
Momentum compaction [10^-5]	0.71	0.71	1.43	1.43		
Beta functions at IP (bx/by) [m/mm]	1.04/2.7	0.33/1	0.21/1	0.13/0.9		
Emittance (ex/ey) [nm/pm]	1.4/4.7	0.64/1.3	0.87/1.7	27/1.4		
Beam size at IP (sigx/sigy) [um/nm]	39/113	15/36	Desi	GN /35		
Bunch length (SR/total) [mm]	2.2/2.9	22/2	red Des	2.5/8.7		
Energy spread (SR/total) [%]	0.15/0.20	1 Improv	0.87/1.7 red Desi 0.07/0.14 1.2/2.5	0.04/0.13		
Energy acceptance (DA/RF) [%]	2.3 202		1.2/2.5	1.3/1.7		
Beam-beam parameters (ksix/ksiy)	0.071	0.015/0.11	0.012/0.113	0.004/0.127		
RF voltage [GV]	10	2.2	0.7	0.12		
RF frequency [MHz]	650	650	650	650		
HOM power per cavity (5/2/1cell)[kw]	0.4/0.2/0.1	1/0.4/0.2	-/1.8/0.9	-/-/5.8		
Qx/Qy/Qs	0.12/0.22/0.078	0.12/0.22/0.049	0.12/0.22/	0.12/0.22/		
Beam lifetime (bb/bs)[min]	81/23	39/18	60/717	80/182202		
Beam lifetime [min]	18	12.3	55	80		
Hour glass Factor	0.89	0.9	0.9	0.97		
Luminosity per IP[1e34/cm^2/s]	0.5	5.0	16	(115)		

ttbar

Higgs

Z

W

Beam Background

Background on inner most layer

Background	Hit De	ensity($cm^{-2}\cdot I$	3X ⁻¹)	Ţ	ID(Mrad·yr	¹)		uivalent neutro $(10^{12} \cdot cm^{-2} \cdot$	
	Higgs	W	Z	Higgs	W	Z	Higgs	W	Z
Pair production	1.8	1.2	0.4	0.50	2.1	5.6	1.0	3.8	10.6
Beam Gas	0.4	0.4	0.2	0.36	1.3	4.1	1.0	3.6	11.1
Beam Thermal Photon	0.1	0.1	0.03	0.07	0.3	0.8	0.2	0.7	1.9
Total	2.3	1.7	0.63	0.93	3.7	10.5	2.2	8.1	23.6
Lifetime		2			31.21			70.7	
Total_oCDR	2.4	2.3	0.25	0.93	2.9	3.4	2.1	5.5	6.2

Background on sub-detectors

Name	Position in R	Hit/cm ² /BX	Hit/cm ² /s
VTX	15 mm	~2.3	~3.33e7
SIT	15 cm	~0.01	~14507
TPC	50 cm	~0.005	~7253
Ecal	200 cm	~1e-4	~145
Hcal	220 cm	~2e-6	~2.9

Impacts of enhanced luminosities on detectors need to be carefully assessed.

Summary

- Active and intense R&D work across all subdetectors targeting key technologies.
- A lot of progress has been made and several R&D projects have reached a success.
- A new detector concept to address precise EM measurement and PID has been proposed with dedicated R&D already ongoing.
- Still a lot of room for improvement and innovation.

Back up