

CEPC 650MHz, High-Efficiency Klystrons and MBKs

Zhou Zusheng

zhouzs@ihep.ac.cn

On behalf of CEPC RF power source team

Nov. 9, 2021

Outline

- **◆**Design consideration
- **♦**R&D Status
- 1 High efficiency klystron fabrication
- ② MBK design
- 3 High power test stand preparation
- **♦**Summary

中國科學院為維約用研究所 Design consideration

High power RF sources are required to provide the energy needed to accelerate particles or keep particles energy stable.

TUNNEL CROSS SECTION OF THE ARC AREA

CEPC Booster

Three rings in the same tunnel:

- > CEPC Collider & Booster
- > SppC

The Collider beam power is more than 60 MW. The increase in efficiency of RF power sources is considered a high priority issue.

RF power sources - efficiencies

	Tetrodes	IOTs	Klystrons		SSA	Magnetrons
f range:	DC-400MHz	(200–1500)MHz	300 MHz – 1 GHz	П	DC – 20 GHz	GHz range
P class (CW):	1 MW	1.2 MW	1.5 MW	П	$1\mathrm{kW}$ @ low f	< 1MW
typical η :	85% - 90% (class C)	70%	65%		60%	90%
Remark	Broadcast technology, widely discontinued				Requires <i>P</i> combination of thousands!	Oscillator, not amplifier!

High power klystrons are the more attractive choice because of their high efficiency, low cost and more stable than IOT and SSA for CEPC collider.

System overall efficiency

CEPC Collider SRF Wall Plug Efficiency

Wall to PSM power supply/modulator	95%
Modulator to klystron	96%
Klystron to waveguide	70%
Waveguide to coupler	95%
Coupler to cavity	~100%
Cavity to beam	~100%
Overall efficiency	~60.6%

Saturation: 80%

Linear region: 70%

The critical factor is klystron efficiency

Much higher efficiency, less energy consumption.

Efficiency impact on operation cost (Only considering operation efficiency of klystrons)

CEPC at 800 RMB/MWh and 6000 hours/year

R&D Status

中國科學院為維約理湖第所 Design goal Institute of High Energy Physics Chinese Academy of Sciences

- The vast majority of the existing commercial klystrons in the electronic efficiency range between 40% and 55%. Only a few klystron available on the market are capable of operating with about 65% efficiency or above.
- In a recent theoretical calculation, more than 80% RF power conversion efficiency is achieved in CW klystron. Considering this recent high efficiency approach, our design goal is to achieve around 80% on saturation point.

CEPC Klystron Key Design Parameters

Parameters	Units	Values
Centre frequency	MHz	650 ± 0.5
Output power	kW	800
Efficiency(Goal)	%	80(70 linear)

1) High efficiency klystron

- a) The high efficiency klystron prototype is being fabricated in Chinese company.
- b) The klystron prototype has been completely manufactured and being baking out in the baking furnace. It will be delivered to PAPS site for high power conditioning and test next month.

1) High efficiency klystron

Design parameters

- ① CST 3D efficiency: 77%
- ② Output power: 808.3kW(Beam power 1.05MW)
- ③ Gain(3D): 48.3dB
- *④* Bandwidth(2.5D): \geq 0.8MHZ

Mechanical design

After completing mechanical design at the end of 2020, klystron prototype manufacture is collectively started.

Mechanical drawing

Cavity

Electron gun

Ceramic insulator

Focusing electrode

Modulator anode

Cathode Assy.

ning
Parts leak detection

Cavity brazing

Cold test

Storage with nitrogen

Collector

Collector body

Water jacket

Focusing magnet

Klystron girder and oil tank

Electron gun processing

Cathode Temp. 975 degree C @Fil. 27V/6A

Klystron final assembly

Klystron final assembly

Klystron baking out

1) Design Parameters

Parameters	Unit	Value
Gun Voltage	kV	54
Beam number		8
Beam perveance	μΡ	0.2
Output power	kW	800
1dB bandwidth (3-D simulation)	MHz	±0.75
Efficiency(3-D simulation)	%	80.5

The MBK physical design is finished, including the interactive cavity, electron gun, focusing solenoid, window and collector. The final efficiency is about 80.5% with 3d simulation code.

2 Multi-beam klystron

2) 3d mechanical drawing

♦ The preliminary 3d mechanical drawing is finished.

2 Multi-beam klystron

3) Design review meeting

Design parameters

	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5	
Cathode Voltage (kV)	54	100	110	120	130	
Beam current (A)	20	10.6	9.3	8.3	7.6	
Operation Mode	Pulsed & DC					
Pulsed Width	500μs~DC					
Repetition Rate	0.1∼100Hz					
Duty Factor	0~100%					
Power Supply Efficiency	• • •					

Topology scheme

Design effect picture

Top view

Control cabinet

Site installation and test

Test results

DC operation mode

Pulsed operation mode

130kV/16A PSM power supply is located in PAPS site and ready for klystron high voltage conditioning and test in the near future.

PSM Power Supply @PAPS site

Summary

- The increase in efficiency of RF power sources is considered a high priority issue.
- The manufacture of high efficiency klystron prototype will be completed at the end of next month.
- MBK will be immediately manufactured after design refine.
- The high voltage power supply is ready for test stand.

Thanks for your attention!