### CEPC Low Level RF R&D

MA Xinpeng

Institute of High Energy Physics

On behalf of LLRF CEPC R&D team

2021-11-09

### Outline

- □CEPC LLRF overview and requirements
- □CEPC LLRF research and development
- ☐ Future plan

### **CEPC Layout**

LLRF for: Collider SC Cavities; Booster SC Cavities; Linac NC Acc-tubes;



#### **Superconducting Cavities of CEPC Accelerator**

| Booster                            | Н      | W      | Z      |
|------------------------------------|--------|--------|--------|
| RF frequency [MHz]                 | 1300   | 1300   | 1300   |
| Cavity number                      | 96     | 64     | 32     |
| Injection and extraction cycle [s] | 13.5   | 16.5   | 26.5   |
| QL                                 | 1E7    | 1E7    | 1E7    |
| Lorentz force detuning [Hz]        | -337.3 | -111.0 | -117.5 |
| Microphonics detuning [Hz]         | 20     | 20     | 20     |
| Cavity bandwidth [Hz]              | 130    | 130    | 130    |
| Cavity time constant [μs]          | 2449   | 2449   | 2449   |
| Injection cavity voltage [MV]      | 0.9    | 1.4    | 2.8    |
| Extraction cavity voltage [MV]     | 19.1   | 10.9   | 11.3   |
| SSA power [kW]                     | 25     | 25     | 25     |
| SSA number                         | 96     | 64     | 32     |



#### **Superconducting Cavities of CEPC Accelerator**

| Collider                       | Н     | W     | Z     |
|--------------------------------|-------|-------|-------|
| RF frequency [MHz]             | 650   | 650   | 650   |
| Cavity number                  | 240   | 216   | 120   |
| Beam Energy [GeV]              | 120   | 80    | 45.5  |
| Optimal QL                     | 1.5E6 | 3.2E5 | 4.7E4 |
| Optimal detuning [kHz]         | -0.2  | -1    | -17.8 |
| RF voltage [GV]                | 2.17  | 0.47  | 0.1   |
| Cavity bandwidth [kHz]         | 0.4   | 2.0   | 13.7  |
| Beam current / beam [mA]       | 17.4  | 87.7  | 460   |
| Cavity operate gradient [MV/m] | 19.7  | 9.5   | 3.6   |
| Synchrotron phase [deg]        | 37.1  | 43.7  | 68.9  |
| Input power / cavity[kW]       | 250   | 278   | 275   |
| Klystron number                | 120   | 108   | 60    |



### Linac MW system parameters

| SHB1 Freq [MHz]  | 142.8375 |
|------------------|----------|
| Power [kW]       | 10       |
| SHB2 Freq [MHz]  | 571.35   |
| Power [kW]       | 7        |
| MW Freq [MHz]    | 2860     |
| Power [MW]       | 80       |
| Pulse width [us] | 4        |
| Repetation Rate  | 100      |
| MW Freq [MHz]    | 5720     |
| Power [MW]       | 50       |



#### **LLRF** Requirements

| Booster/Collider requirements | Value        |
|-------------------------------|--------------|
| Phase stabilization           | 0.1deg (rms) |
| Amplitude stabilization       | 0.1% (rms)   |
| Run mode                      | CW           |

| Linac                   | Value        |
|-------------------------|--------------|
| Phase stabilization     | 0.2deg (rms) |
| Amplitude stabilization | 0.2% (rms)   |
| Run mode                | Pulsed       |

#### Aim of LLRF:

- control of phase/amplitude/frequency
- feedback/feedforward
- beam loading compensation
- quench detection
- monitoring of forward/reflected/pickup power
- calculate vecter-sum of double-cavities driven by one klystron
- life protection of klystron
- to/from interlock/BI/timing system
- remote diagnose and control
- sufficient smart and automation
- high reliability, stability
- easy maintanence

# CEPC LLRF research and development

#### LLRF Structure for Booster cavities

Similar of Collider cavities/Linac except for high power sources and cavities



### Why we choose MicroTCA.4 standard

- Big project like CEPC, maintanence and reliability are ulta important, as many controller stations exists all over the machine km away. And the trip rate should be considered (not zero), on-site maintance every time will not acceptable.
- So LLRF system MUST remote accessable through Ethernet, diagnose remotely and control directly into the electronics board level and crate/rack level management of the crates. Automatic operation of the hardware system, stability 99.999%(with 2x redundancy).
- □ LLRF system MUST monitor all the signals of the RF/cavity system, 125MHzx16chx2Bytes=4GBytes, VME/CPCI/PXI... will not fulfill the task.

|             | Data rate         | management    | remote | stability | Cost       | vendor                      | Clock          |
|-------------|-------------------|---------------|--------|-----------|------------|-----------------------------|----------------|
| MicroTCA.4  | 10GB/s-<br>40GB/s | IPMI          | Yes    | 99.999%   | \$\$\$     | medium, full<br>standarized | trigger,<br>WR |
| OpenVPX     | 10GB/s            | IPMI, not req | Yes    | 99.9%-    | \$\$\$\$\$ | customized                  | Yes            |
| CPCI-Serial | 10GB/s            | IPMI, not req | Yes    | 99.999%?  | \$\$\$     | few                         | No             |
| PXIe        | 10GB/s            | No            | No     | ?         | \$\$       | many                        | No             |

#### MicroTCA.4: A Modular Crate System



#### Courtesy by Kay Rehlich, DESY

#### **MTCA Specifications**







AMC Port 13 AMC Port 14 AMC Port 15

AMC Port 17 AMC Port 18 AMC Port 19

AMC Port 20

Clocks MCH1 CLK1 to AMC TCLKA

Clocks AMC TCLKB to

MCH1 CLK2

(MTCA.0 Figure 6-9)

#### Community members

| 欧洲 | Euro-XFEL/FLASH   | 德国DESY    |  |
|----|-------------------|-----------|--|
|    | ESS               | 瑞典Lund U. |  |
|    | FAIR              | 德国GSI     |  |
|    | SOLEIL            | 法国ESRF    |  |
|    | Diamond           | 英国DLS     |  |
|    | SPS               | 瑞士CERN    |  |
|    | ITER              | 法国ITER    |  |
|    | MYRRHA            | 法国IPNO    |  |
|    | CMS               | 瑞士CERN    |  |
| 美洲 | APS-U             | 美国ANL     |  |
|    | FRIB              | 美国MSU     |  |
|    | LCLS-II           | 美国SLAC    |  |
|    | SNS               | 美国ONL     |  |
|    | Sirius            | 巴西LNLS    |  |
| 日本 | KEKB/cERL/STF     | KEK       |  |
|    | SPring-8          | RIKEN     |  |
|    | JPARC             | JPARC     |  |
| 中国 | SXFEL/DCLS        | SARI      |  |
|    | C-ADS/BEPCII/HEPS | IHEP      |  |
|    | NSRL              | NSRL      |  |

Common Options MCH2 Fabric [A] to

AMC Port 1

Common Options MCH2 Fabric [B] to

AMC Port 3

Extend. Fat Pipe MCH2 Fabric [D:G] to AMC Port [8:11]

clock) to AMC FCLKA

Clocks AMC TCLKB to

MCH2 CLK2

(MTCA.0 Figure 6-9)

MicroTCA.0

MicroTCA.4

MicroTCA.4.1

#### LLRF Control System @ PAPS for 650MHz CEPC SC Cavities

#### LLRF system includes:

- MicroTCA.4 based hardware, very high stability and reliability, maintainance, remote managable, 10Gb data bandwidth;
- sampling all signals(>18) of powers source and couplers and cavities and HOMs;
- control of piezo/motor for frequency stablility;

Power Meter

Timing Module

Master Oscillator

LLRF Front-end

LLRF Controller (MicroTCA.4 Crate)

10MHz Rb Clock

**LLRF Rack** 



### LLRF hardware and test for SC cavities

#### LLRF test: phase stability :<0.02°rms





□Ref: 650MHz ;

□Crate: nVent-9U, PS: Wiener-1kW;

□MCH/CPU: NAT MCH-PHY80/RTM;

□SIS8300L2/DWC8VM1 from Struck;

■8 ADC; 2 DAC;

Timing: trigger through backplane;



### LLRF has been working for horizontal test of CECP Cavities

Generate drive signals; Monitoring all signals; Vacuum, radiation recorded; Cryo;

Typical User Interface of the LLRF system using CSS based on EPICS



- ☐ Frequency bandwidth:300MHz-6GHz;
- 8 ch ADCs; 2 ch DACs;
- □ RF Front-end: generate LO and CLK;
- □ 3U MicroTCA.4 crate;

Downconverter could be used for 2860MHz and 5720MHz, 1.3GHz





For Klystron and Acc tube conditioning (S-band)



#### Platform for conditioning and test of Linac



#### automatic conditioning by PLC



#### User interface of auto-conditioning



#### High Voltage during conditioning



- Direct sampling RTM board
- □ Input bandwidth: 0-650MHz: for both SHB and 650MHz SC Cavities;
- **□** 99.96MHz clock jitter: 98fs (10Hz-10MHz);
- □ 6 ADC , 2DAC ;
- □ need no LO, CLK module integrated in one board;



Courtesy by Gan Nan









Courtesy by Gan Nan

#### preliminary tested with Struck SIS8300L2





RMS  $Err = 0.019^{\circ}$ 







#### 499.8MHz direct sampled



SFDR better than 80dB

### DS RTM on HEPS SHB TB @166.6/499.8MHz

## DWC RTM on HEPS TB @2998.8MHz











2019.10

Signal Fanout

Power Meter

MicroTCA LLRF Crate

Front-end

SSA

**UPS** 





LLRF for S band Linac

Y20-Y21, 6 new S-band
 LLRF system installed on
 BEPCII Linac and in
 operation stable

- 8ADC; 2DAC;
- vector modulator;
- Ref: 2856MHz;
- 8 microwave monitor
- 2 HV/I monitor;
- Trigger ;
- digital PSK for SLED;
- fully digiital;



- □ Timing/interlock fanout board
- used for local timing of modulator/SSA/LLRF/power meter...
- using openmmc;
- work well with MicroTCA.4 crates;
- 8 electro-IOs & 4 optical-IOs to backplane MLVDS

Remote monitor and control FRU, HOTSWAP, PAYLOAD, SDR(TEMP, VOLTAGE, CURRENT), GPIO





```
Chassis Info Area : -
                         : at offs=8, len=48
Board Info Area
                         : IHEP
                         : AMC-DIO
                         : at offs=56, len=72
                         : IHEP
                         : AMC DIO
Product Number(08)
                         : DIO-1.0
Part Version(04)
Product Serial Number(10): SN:000000
Asset Tag(12)
                         : Generic FRU
RU file ID(08)
                        : DIO-FRU
```

Modulator HV/Current monitoring; 1) perveance monitor 2) digital trigger btw HV and MW pulses;
 timing through backplane, SSA/modulator/PSK;
 input drive signal customized;
 reverse protection;
 feedforward;
 I/Q modulator calibration;
 interlock;







**□**Stability

short term amplitude 1%(p-p), phase 0.5°(p-p), x4 better



### Future plans

- □ A universal LLRF solution has been developed for 100MHz-6GHz applications, Optimize hardware and software will be continued to next version.
- 650MHz Cavities test and beam experiment @PAPS will continue in the next months;
- □ Cavity-Beam interaction and control, cavity control using modern control algrithom are being studied, will be tested on the real cavities and beam next.
- we will continue to strength the local MicroTCA.4 vendors, and an industry-research alliance is considered in China for big-science project control system.