Drift Chamber for CEPC the 4th Conceptual Detector

Shuiting Xin

For CEPC the 4th conceptual drift chamber working group

Nov 9, 2021

The 2021 International Workshop on the High Energy Circular Electron Positron Collider

Outline

- Introduction
- PID study with simulation
- Prototype test
- Estimation of mechanical parameters
- Summary

Introduction

The 4th conceptual detector design

Momenta of tracks @ 240 & 91 GeV

A drift chamber for PID

- A drift chamber (DC) between the Full Silicon Tracker (FST) layers for PID
- To be optimized for PID (better than $2\sigma K/\pi$ separation for P < 20GeV/c)

PID with dE/dx vs dN/dx

- Conventionally, dE/dx method is used for PID by measuring energy loss over the track length
 - Usually limited to < 10 GeV
 - One limiting factor is the Landau tail
 - Truncated mean leads to a loss of part of the measured information
- Cluster counting method, or dN/dx, measures the number of primary ionizations, which follow Poisson distribution
 - Less sensitive to Landau tails
 - Significantly improve the separation power

Key parameters that affects PID

• dN/dx resolution:

$$\frac{\sigma_{dN/dx}}{dN/dx} \propto \frac{1}{\sqrt{L * \rho_{cl} * \varepsilon}}$$

- PID optimization requirement:
 - Low sampling track length L
 - Large primary ionization density ρ_{cl}
 - High cluster counting efficiency ε

(Sufficient thickness of DC)(Suitable gas mixture)(Fast front-end electronics and low noise)

- Other concerns
 - Low material budget X/X₀
 - Location (Inner/Outer radius)

(minimize the impact of multiple scattering) (benefit tracking and momentum measurement)

PID study with full simulation

Take into account the impact on cluster counting efficiency ε and try to optimize ε

- Sampling rate
- Rise time of electronics
- Noise
- Peak finding algorithm

$$\frac{\sigma_{dN/dx}}{dN/dx} \propto \frac{1}{\sqrt{L \cdot \rho_{cl} \cdot \epsilon}}$$

A joint effort with the IDEA group

Preliminary K/ π separation power

100 layers (R_{DC} from 0.8 to 1.8m)

150 layers (R_{DC} from 0.3 to 1.8m)

Cell size: 1cm ×1cm, Gas mixture: 90% He + 10% iC4H10 Sampling frequency : 2GHz

Separation power

$$S = \frac{\left| \left(\frac{dN}{dx} \right)_{\pi} - \left(\frac{dN}{dx} \right)_{K} \right|}{(\sigma_{\pi} + \sigma_{K})/2}$$

K/ π separation up to 20 GeV/c :

- better than 2σ with 100 layers
- better than 3σ with 150 layers

PID study with fast simulation

- Main objective: Speeding up the simulation to enable the study of PID performance
- Method: Sampling dN/dx (truth) by a certain track length using Garfield
- Two models are considered.
 - dN/dx model : assuming a counting inefficiency with corresponding uncertainties
 - TOF model : assuming a time resolution 50 ps

Preliminary PID performance

κ/π Separation power

(R_{DC} from 0.8 to 1.8m)

PID efficiency (R_{DC} from 0.8 to 1.8m)

For K and π up to 20 GeV/c

- PID efficiency >~ 90%
- Misidentification rate < 10%

Impact on momentum measurement

- Compared with full silicon tracker (FST), P_T resolution of the hybrid system with drift chamber
 - Improved significantly in momentum range of 0-20 GeV/c
 - Almost no degradation with momentum up to 80 GeV/c
- Software tool for fast tracking simulation: LDT

Sub detector	R (mm)	Resolustion (µm)		Materia
		r-φ	Z	(%X ₀)
Beam pipe	14(10)			0.15
VXD		2.8/6/4/4/4/4	2.8/6/4/4/4/4	0.15/layer
VXD shell	65			0.15
SIT	Uniformly	7.2	86.6	0.65/layer
DC inner wall	800			0.104
DC sense layer		100	2000	0.0116/layer
DC outer wall	1800			1.346
SET	1810	7.2	86.6	0.65

Parameters for tracking fast simulation

p_T resolution vs p_T

Ongoing efforts – Noise generation

- Noise amplitude related to singlepulse amplitude
 - Noise level definition: $\frac{\sigma_{Noise}}{\bar{A}_{signal}}$
- Noise frequency from experiment measurement
 - Frequency spectrum from FFT analysis

Ongoing efforts – Peak finding algorithm

- Using the second derivative (D2) for "hidden peaks" detection
- Parameter optimization: Detection threshold & Moving average size

Ongoing efforts – Gas mixtures study

- choice of the gas mixture is essential •
 - High cluster density compatibly with cluster counting efficiency
 - Low drift velocity helps to identify clusters in time •
 - Small longitudinal diffusion is beneficial to both • spatial resolution and dN/dx measurement
- Simulation of gas mixture performed to understand • the gas property and optimize the working point

Cluster density vs ratio of He

Prototype test

- Prototype test to validate and optimize simulation parameters (ongoing)
- Coincidence of scintillator counters provides trigger and constraint of incident track angle
 - ➤ Gas: 80% He + 20% iC₄H₁₀
 - Preamplifier: LMH5401 evaluation module
 - Gain bandwidth product (GBP): 8 GHz
 - Gain : 12 dB (4 V-V), R_f : 127 Ω

Estimation of mechanical parameters

- Rough estimation of mechanical parameters performed
- Further optimization of DC parameters should take into account mechanical design
- More work ongoing

Length of wire vs coverage of barrel section (Rout = 1800 mm)

cosθ	0.80	0.81	0.83	0.85
Length of wire (mm)	4800	4972	5357	5809

Wire tension vs cell size

Summary

- Preliminary PID performance with simulation (DC thickness = 1m)
 - K/ π separation up to 20 GeV/c
 - PID efficiency > 90% For K and π up to 20 GeV/c
- Many studies ongoing
 - Noise generation
 - Peak finding algorithm
 - Gas mixture
 - Prototype test

Backup

Single pulse amplitude

Scanning of DC dimension

- Cell size fixed (10mm * 10mm)
- Larger DC volume means more layers
- Sensitive to p<40 GeV

- Larger DC volumes achieve better momentum measurement in low pt region (critical point ~ 40 GeV)
- dR=1200mm (600 ~ 1800 mm) might be a good choice with consideration of PID and P_τ resolution

Scanning of number of DC layers

- DC dimension fixed (600 ~ 1800 mm)
- Less DC layers means larger cell
- Affects P_T resolution ~ 10% in [0-10] GeV range

- Less layers achieve better momentum measurement
- Optimization of cell size ongoing with consideration of diffusion effect and mechanical design

dN/dx distribution from counting

Numbers:

- # of primary peaks (truth): 16.42
- # of detected peaks: 15.59
- # of detected peaks that match to truth: 13.86

Note:

- dN/dx is very Gaussian-like
- Primary peaks are dominant