

ALICE TPC

The **2021** International Workshop on the High Energy Circular Electron Positron Collider

November 8-12, 2021, Nanjing, China

Consolidate the optimization and design of both accelerator and detectors and aim for a TDR in 2 years Deepen the cooperation between the industry and high energy physics community

Piotr Gasik

on behalf the ALICE Collaboration

(GSI/FAIR, Darmstadt)

TPC - a versatile tracking detector

TPC – an (almost) ideal tracking detector

- Almost the whole volume is active
- Minimal radiation length (field cage, gas)
- 3D spatial information about hits
- Easy pattern recognition (continuous tracks)
- High particle densities
- Good momentum, time and spatial resolution
- Particle identification via measurement of (dE/dx)
- Operating under high magnetic fields

Wide range of applications

- Colliders and fixed-target: pp, e⁺e⁻, HIC
- Low energy nuclear physics, neutrino physics
- BSM physics: DM, $\beta\beta O\nu$,

"Theory of evolution"

1970s - ...

- Streamer chambers
- Photos on chemical film
- 3D information by stereo angles
- Trigger rate $\sim 1 10$ Hz

1990s - ...

- "Classical" MWPC TPCs (e.g. NA49, CERES, STAR, ALICE)
- ~1000 subsequent electronical images per event
- 3D information from relation to drift time
- 4-momentum vectors of all charged particles
- Trigger rate $\sim 100-1000~\text{Hz}$
- Live time $\sim 1 10\%$

2020s - ...

- Continuous operation in video mode
- Live time 100%
- Event rate 10 100 kHz
- ALICE TPC, sPHENIX TPC, future e⁺e⁻ collider TPCs?

Future large volume detectors at future ee/eh machines

- High and ultra-high luminosities
- High-rates of physics events
- "Continuous" or "pulsed" beams

FAIR

ALICE G S II

ALICE TPC UPGRADE

ALICE in Run 1 and Run 2

ALICE detector

Tracking and PID in large kinematic range

	Run 2 (2015 – 2018)
Run 1 (2009 – 2013)	Pb-Pb @ Vs _{NN} = 5.02 TeV
Pb-Pb @ √s _{NN} = 2.76 TeV	Xe-Xe @ $\sqrt{s_{NN}}$ = 5.44 TeV
p-Pb @ Vs _{NN} = 5.02 TeV	p-Pb @ √s _{NN} = 5.02, 8.16 TeV
pp @ √s = 0.9, 2.76, 7, 8 TeV	pp @ √s = 5, 13 TeV

ALICE strategy for Run 3 and Run 4:

- Increase minimum bias sample x50-100 wrt. Run 2, collect \mathcal{L}_{Pb-Pb} = 13 nb⁻¹
- Write all Pb-Pb interactions at 50 kHz; current readout rate $\mathcal{O}(1 \text{ kHz})$
- No dedicated trigger
- Experiment upgrades (LS2)

Improve tracking efficiency and resolution at low p_{T}

- Increase tracking granularity
- Reduce material thickness
- Minimize the distance to the interaction point

Preserve particle identification (PID)

• Consolidate and speed up main ALICE PID detectors

ALICE TPC

- Diameter: 5 m, length: 5 m
- Gas: Ne-CO₂-N₂, Ar-CO₂
- Max. drift time: ~100 μs
- 18 sectors on each side
- Inner and outer readout chambers: IROC, OROC
- TPC in Run 1 and Run 2:
 - 72 MWPCs
 - ~550 000 readout pads
 - Wire gating grid (GG) to minimize ion backflow (IBF)
 - Rate limitation: few kHz

Operate TPC at 50 kHz

 \rightarrow no gating grid and continuous readout

Continuous readout with GEMs

Gas Electron Multiplier (GEM)

TPC upgrade requirements:

- Nominal gain = 2000 in Ne-CO₂-N₂ (90-10-5)
- Ion backflow (IBF) < 1% (ε = 20)
- Energy resolution: $\sigma_E/E < 12\%$ for ⁵⁵Fe
- Stable operation under LHC Run 3 conditions

Solution: 4-GEM stack

- Combination of standard (S) and large pitch (LP) GEM foils
- Highly optimized HV configuration
- Result of intensive R&D

Continuous readout with GEMs

TPC upgrade requirements:

- Nominal gain = 2000 in Ne-CO₂-N₂ (90-10-5)
- Ion backflow (IBF) < 1% (ε = 20)
- Energy resolution: $\sigma_E/E < 12\%$ for ⁵⁵Fe
- Stable operation under LHC Run 3 conditions

Solution: 4-GEM stack

- Combination of standard (S) and large pitch (LP) GEM foils
- Highly optimized HV configuration
- Result of intensive R&D

TPC readout electronics

- Newly developed Front-End SAMPA ASIC (TPC and MUON chambers)
 - 130 nm TSMC CMOS
 - 32 channels (positive or negative input)
 - PASA preamplifier + 10-bit ADC
 - Programmable conversion gain and peaking times
 - DSP, Memory, High speed e-links
 - Readout mode: continuous or triggered
 - Excellent noise figure of 670 e⁻
 - Power consumption performance: 8.3 mW/channel
- Front-End Cards (FEC)
 - 5 SAMPA chips per FEC (3276 FECs in total)
 - System continuously digitizes signals at 5 MHz
 - All ADC values are read out 3.28 TB/s
 - FECs send digitized data over fiber optic links to ALICE Common Readout Units (CRU)

ALICE **G**

50 kHz Pb-Pb collisions

- MC events overlaid on cluster level, using realistic bunch crossing structure
- Timeframe of 2 ms shown (will be 10–20 ms during production).

20 × TPC drift time (= 2 ms)

• Tracks/Clusters from different collisions are shown in different colors.

Expected performance

- 1% of IBF at $G_{eff} = 2000$ ($\epsilon = 20$)
- distortions up to dr \approx 20 cm and dr $\phi \approx$ 8 cm (at small r and z)
- well below 10 cm for the largest part of drift volume
- Corrections to $\mathcal{O}(10^{-3})$ are required for final calibration to the level of intrinsic resolution, $\sigma_{r\phi} \approx 200 \ \mu m$ (space charge maps + external detectors (ITS, TRD))
- 2-stage calibration and reconstruction scheme

Measured ROCs IBF uniformity $(0.56 \pm 0.14)\%$ - large margin for fine-tuning —

(fC/cm³) 100 (fC/cm³)

Expected performance (PID, momentum)

• New TPC readout chambers (GEM):

- PID performance via dE/dx preserved
- Confirmed with several test beams at CERN/PS
- Energy resolution compatible with MWPC TPC
- (~5.5% in pp and ~7% in Pb-Pb)
- Slight deterioration of separation power for 5 MHz sampling

- Preserve momentum resolution for TPC + ITS tracks
- + $\sigma_{p\rm T}/p_{\rm T}$ \lesssim 1% at 1 GeV/c, $\sigma_{p\rm T}/p_{\rm T}$ \lesssim 3.5% at 50 GeV/c

INSTALLATION & COMMISSIONING

TPC upgrade

- The ALICE TPC was extracted and upgraded in the cleanroom in 2019
- All chambers and FECs are installed
- Pre-commissioning completed
- TPC is back in the ALICE cavern

ROC installation

GEM chambers reflection

Upgraded TPC © images: CERN, https://cds.cern.ch/record/2727174

TPC lowering

TPC positioning

TPC pre-commissioning on the surface

• Pre-commissioning on the surface

- 2 sectors tested at a time:
 - Pulser and noise
 - Laser and cosmic runs
 - X-ray irradiation

Laser tracks in the TPC

Excellent noise figure of 1 ADC

Cosmic tracks examples

TPC commissioning in ALICE

(cm)

- Laser runs ٠
- Pulser runs
- Cosmic runs
- X-ray runs
- Readout commissioning
- Gain equalization, pad-by-pad calibration with ⁸³Kr source

Laser tracks in full TPC volume

Cosmic run with continuous readout

First beams on 27.10.2021!

- First Stable Beams declared since almost 3y
- pp collisions at \sqrt{s} = 900 GeV, 2 colliding bunches
- First tracks recorded with the upgraded TPC
- Performance with basic calibration as expected, further optimization ongoing → stay tuned!

ALICE event display

QA plot – first tracks with the upgraded ALICE TPC

First beams on 27.10.2021!

- First Stable Beams declared since almost 3y
- pp collisions at \sqrt{s} = 900 GeV, 2 colliding bunches
- First tracks recorded with the upgraded TPC
- Performance with basic calibration as expected, further optimization ongoing → stay tuned!

Online plot from QC during pilot run with 900 GeV collisions

QA plot – first tracks with the upgraded ALICE TPC

Summary

- Quadruple GEM readout for low ion backflow operation
- Extensive (pre-)commissioning campaigns concluded with first pp collisions recorded!
- Getting ready for a fruitful Run 3 and Run 4

- We are not at our limits, still going bigger, faster, more precise...many challenges ahead!
- TPC can be considered as a perfect tracker for many applications, including e⁺e⁻ machines!

TPC time frame visualization of real data from pilot beam

