

Development of large area µRWELL detector

Zhujun Fang, Yi Zhou, Jianbei Liu

State Key Laboratory of Particle Detection and Electronics USTC

Outline

1. Motivation

- 2. Fast grounding research
- 3. Detector performance optimization: magnetic field
- 4. Summary

μRWELL detector

µRWELL detector

- Suppressiveness of sparks
- Large gain
- Simple structure

Several developments of µRWELL detector:

Large area

2021/11/10

High rate capability

The 2021 International Workshop on the High Energy Circular Electron Positron Collider

Customization for applications

3

Overview: µRWELL in CEPC

1. Preshower detector

Alternative applications of

µRWELL in CEPC

2. Muon detector system

Requirements:

- Large area
- High robustness
- Good rate capability
- Stable performance under different working conditions

μRWELL rate capability

For traditional µRWELL:

- Decreased gain under high rate
- Caused by the introduction of resistive layer
- Harmful to performance,
 especially with large area

Readout array

Fast grounding µRWELL

Fast grounding:

- Setting grounded conductor array
- Decreasing equivalent grounding resistance of DLC
- Remaining detector gain

1D strip-grounded

Double layer point-grounded

Point-grounded

Research direction

Two effects:

- (U) Voltage drop effect by DLC flowing current
- (Q) Electrostatic field effect of accumulated charge

Principle:

- Contributions of the two effects
- Optimization of μRWELL fast grounding for large area

Manufacturing technologies:

- Performance evaluation of existing technologies
- Acceptable manufacturing deviation

Outline

- 1. Motivation
- 2. Fast grounding research
- 3. Detector performance optimization: magnetic field
- 4. Summary

Voltage drop effect

Simulation 1: Kirchhoff-equation-method

Key points:

- Dividing DLC into 2-D grid
- I_{in} equals I_{out} in each pixel
- Potential equals 0 in grounded pixel^{U_{i,j-1}}
- Kirchhoff equations
- Solving voltage drop distribution on DLC, and flowing out current distribution on grounded-pixels

Advantages

Accurate solutions

Irradiated pixel

Grounded pixel

Disadvantages:

- Low calculation speed
- Cannot get DLC equivalent resistance effectively

Voltage drop effect

Simulation 2: Ideal-formula method

Key point:

- Dividing DLC and irradiation area into 2-D grid
- Solving flowing out current distribution on grounded-pixels
- Calculating voltage distributions
 by each I_{in} I_{out} pair
- Summing weighted
- Traversing all the irradiated
 pixels and getting the total effect

Blue circle: grounded points

Red circle: current flowing in point

$$U_{i} - U_{1} = \frac{I_{0} \cdot R_{s}}{2\pi} \sum_{j=1}^{N} \omega_{j} \cdot ln \left(\frac{r_{j-i}}{r_{j-1}}\right) = 0$$

Advantages:

- Fast calculation speed
- Getting DLC equivalent resistance simultaneously

Disadvantage:

Voltage drop effect

Simulation results:

- 1 MHz/cm² 8.1 keV X ray, $G_0 = 24000$
- Main area of DLC: voltage drop 2.8 V ±5%
- $G/G_0 = 91.8\% \pm 0.3\%$

Charge accumulation effect

1. Maxwell simulation

• Electric field with charge areal density

2. Garfield database

Townsend -electric field relationships

Charge accumulation effect

3. Accumulation in the µWELL

• Charge accumulation effect

In the steady state:

$$\Delta Q = \frac{\Delta E}{W} \cdot G \cdot Rate \cdot S_{rad}$$

$$dt \cdot \Delta Q = \sigma_0 \cdot S_{rad} \cdot \left(1 - e^{-\frac{dt}{\tau}}\right)$$

$$\therefore \sigma_0 = \frac{dt \cdot \Delta Q}{S_{rad} \cdot \left(1 - e^{-\frac{dt}{\tau}}\right)} = \frac{dt \cdot \frac{\Delta E}{W} \cdot G \cdot Rate \cdot S_{rad}}{S_{rad} \cdot \frac{dt}{\tau}}$$

$$= \tau \cdot \frac{\Delta E}{W} \cdot G \cdot Rate$$

Charge accumulation effect

The accumulated charge areal density is proportional to the time constant of DLC-ground circuit.

• PEDF μRWELL:

Measured: DLC cuurent drops to bkg-level within 111 ms, $e^{-t/\tau}=1.8\%$, $t=4\tau$, $\tau<28$ ms

Simulation result

Combining the two effects:

Experimental evaluations

INFN proposed strip-grounded and double layer point-grounded design

Experimental evaluations

- The grounded point has a contact resistance, may influence the rate capability.
- PEDF contact resistance: $200-500 \text{ M}\Omega$
- PEDP contact resistance:

 $15-35 \,\mathrm{M}\Omega$

Measured contact resistance in PEDF grounded-points array

Experimental evaluations

- Good match between simulation and experimental data
- Suppressing the contact resistance in grounded points is very important for large area fast grounding μRWELL

PEDF, Φ 8 mm 8.1 keV X ray irradiated

2021/11/10

18

Outline

- 1. Motivation
- 2. Fast grounding research
- 3. Detector performance optimization: magnetic field
- 4. Summary

µRWELL under magnetic field

Due to the magnetic field in Z direction, situations are different:

- Electron drift velocity
- Transverse & longitude diffusion coefficients
- Lorenz angle

•

Gas volume width
Gas component

Drift electric field strength

Ideal parameters simulation

1 T magnetic field

Gradient descent method in multi-dimensions

Optimal region:

- Gas width: 5 mm
- Lorenz angle: 20-40 deg
- V_{drift} : ~2 cm/µs
- $\sigma_{Transverse} < 100$ μm/sqrt(cm)

Circular Electron Positron Collider

Real situation optimization

Target: tens of gas components from Garfield database

Gas volume width in this step: 5 mm

Optimal gas component: $Ar:CO_2=85:15$

(or Ar:DME=90:10)

Optimal electric drift field strength: 500 V/cm

µRWELL under magnetic field

Many parameters influences the spatial resolution:

- p_T of charged particle
- Polar angle of particle
- Negative/positive charged
- Gas component & working point

Spatial resolution in rφ direction

By optimizing the gas component and working point, a good performance of $\mu RWELL$ under magnetic field can be obtained.

Outline

- 1. Motivation
- 2. Fast grounding research
- 3. Detector performance optimization: magnetic field
- 4. Summary

Summary

- 1. Large area μRWELL is an alternative detector choice in CEPC.
- 2. We proposed a full-simulation method of fast grounding, contributing to the μRWELL detector design, parameter optimization, and performance expectations.
- 3. Suppressing the grounded point contact resistance is very important for the large area $\mu RWELL$ manufacturing process.
- 4. By Geant4 & Garfield++ simulation, the optimal gas component and working point of μ RWELL under magnetic field can be obtained. (i.e. Ar:CO₂=85:15, E_{drift} = 500 V/cm for 1 T)

THANKS FOR YOUR ATTENTION