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μRWELL detector
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μRWELL detector

• Suppressiveness of sparks 

• Large gain 

• Simple structure

Large area Customization for applications High rate capability

Several developments of μRWELL detector:
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Overview: μRWELL in CEPC
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1. Preshower detector

2. Muon detector system

Alternative applications of 

μRWELL in CEPC

Requirements:

• Large area

• High robustness

• Good rate capability

• Stable performance under different working conditions
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μRWELL rate capability
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For traditional μRWELL:

• Decreased gain under high rate

• Caused by the introduction of 

resistive layer

• Harmful to performance, 

especially with large area
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Fast grounding μRWELL
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Fast grounding:

• Setting grounded conductor array

• Decreasing equivalent grounding 

resistance of DLC

• Remaining detector gain

1D strip-grounded Double layer point-grounded Point-grounded
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Research direction
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Principle:

• Contributions of the two effects

• Optimization of μRWELL fast 

grounding for large area

Manufacturing technologies：

• Performance evaluation of existing 

technologies

• Acceptable manufacturing deviation

Two effects：

• (U) Voltage drop effect by DLC flowing current

• (Q) Electrostatic field effect of accumulated charge
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Voltage drop effect
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Key points:

• Dividing DLC into 2-D grid

• Iin equals Iout in each pixel

• Potential equals 0 in grounded pixel

• Kirchhoff equations

• Solving voltage drop distribution on 

DLC, and flowing out current 

distribution on grounded-pixels

Irradiated pixel Grounded pixel

Simulation 1: Kirchhoff-equation-method

Advantages

• Accurate solutions

Disadvantages:

• Low calculation speed

• Cannot get DLC equivalent 

resistance effectively
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Voltage drop effect
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Simulation 2: Ideal-formula method

Key point:

• Dividing DLC and irradiation 

area into 2-D grid

• Solving flowing out current 

distribution on grounded-pixels

• Calculating voltage distributions 

by each Iin Iout pair

• Summing weighted

• Traversing all the irradiated 

pixels and getting the total effect
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Advantages:

• Fast calculation speed

• Getting DLC equivalent resistance 

simultaneously

Disadvantage:

• Distortion at the DLC boundary
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Voltage drop effect
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Kirchhoff-equation-method Ideal-formula method △U ratio

Simulation results:

• 1 MHz/cm2 8.1 keV X ray, G0 = 24000

• Main area of DLC: voltage drop 2.8 V±5%

• G/G0 = 91.8%±0.3%
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Charge accumulation effect
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1. Maxwell simulation

• Electric field with charge areal density

2. Garfield database

• Townsend -electric field relationships
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Charge accumulation effect
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3. Accumulation in the μWELL

• Charge accumulation effect

In the steady state:
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Charge accumulation effect
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The accumulated charge areal density is proportional to the 

time constant of DLC-ground circuit.

• Measured: DLC cuurent

drops to bkg-level within 

111 ms, e-t/τ=1.8%, t=4τ, 

τ<28 ms

• PEDF μRWELL:
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Simulation result
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Many fast grounding

designs performance

Rate capability with

various irradiation area

Combining the two effects:
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Experimental evaluations
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INFN proposed strip-grounded and double layer point-grounded design

experiments simulations
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Experimental evaluations
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• The grounded point has a contact 

resistance, may influence the rate 

capability.

• PEDF contact resistance: 

200-500 MΩ

• PEDP contact resistance: 

15-35 MΩ

Measured contact resistance in PEDF 

grounded-points array



18

Experimental evaluations
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PEDF, Ф 8 mm 8.1 keV X ray irradiated

• Good match between simulation and experimental data

• Suppressing the contact resistance in grounded points is 

very important for large area fast grounding μRWELL
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Due to the magnetic field in Z direction, situations are different：

• Electron drift velocity

• Transverse & longitude diffusion coefficients

• Lorenz angle

• …

Gas volume width

Gas component 

Drift electric field strength

μRWELL under magnetic field
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Ideal parameters simulation
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Gradient descent method in multi-dimensions

Optimal region

Optimal region Optimal region

Optimal region

Optimal region:

• Gas width: 5 mm

• Lorenz angle: 

20-40 deg

• Vdrift: ~2 cm/μs

• σTransverse < 100 

μm/sqrt(cm)
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1 T magnetic field
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Real situation optimization

Lorenz angle Electron drift velocity Transverse diffusion coefficient

Gas volume width in this step: 5 mm

Optimal gas component:    Ar:CO2=85:15

(or Ar:DME=90:10) 

Optimal electric drift field strength:   500 V/cm

Target: tens of gas components from Garfield database
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μRWELL under magnetic field
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Spatial resolution in rφ direction

Many parameters influences 

the spatial resolution:

• pT of charged particle

• Polar angle of particle

• Negative/positive charged

• Gas component & 

working point
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By optimizing the gas component and working point, a good 

performance of  μRWELL under magnetic field can be obtained.



24

Outline

24
2021/11/10

1. Motivation

2. Fast grounding research

3. Detector performance optimization: 

magnetic field

4. Summary

The 2021 International Workshop on the High Energy 

Circular Electron Positron Collider



25

Summary
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1. Large area μRWELL is an alternative detector choice in CEPC.

2. We proposed a full-simulation method of fast grounding, contributing

to the μRWELL detector design, parameter optimization, and

performance expectations.

3. Suppressing the grounded point contact resistance is very important

for the large area μRWELL manufacturing process.

4. By Geant4 & Garfield++ simulation, the optimal gas component and

working point of μRWELL under magnetic field can be obtained. (i.e.

Ar:CO2=85:15, Edrift = 500 V/cm for 1 T)
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