

65nm FEE ASIC R&D for TPC

Wei Liu^{1,2}, Canwen Liu^{1,2}, Zhi Yang Yuan⁴, Li Wen Yu⁴, Zhi Deng^{1,2}, Fule Li³, Yulan Li^{1,2}, Huirong Qi⁴

Department of Engineering Physics, Tsinghua University, Beijing, China
 ²Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Beijing, China
 ³Institute of Microelectronics, Tsinghua University, Beijing, China
 ⁴Institute of High Energy Physics, Chinese Academy of Science, Beijing, China

Outline

- > Introduction
- Chip architecture and specifications
- ➤ The test progress on WASA_V0
- The design progress on WASA_V1
- Summary

Introduction

- TPC can provide large-volume high-precision 3D track measurement with stringent material budget
- In order to achieve high spatial resolution, small pads (e.g. 1 mm x 6mm) are needed, resulting ~1 million channel of readout electronics
- Need low power consumption readout electronics working at continuous mode

Current TPC Readout ASICs

- Waveform sampling (8-10 bit, ~10MS/s) is required for TPC signal processing
- Direct ADC sampling is more preferable than SCA for high rate applications
- Lower power consumption \rightarrow less cooling \rightarrow less material

	PASA/ALTRO	AGET	Super-ALTRO	SAMPA
TDC				
TPC	ALICE	T2K	ILC	ALICE upgrade
Pad size	$4x7.5 \text{ mm}^2$	$6.9 \times 9.7 \text{ mm}^2$	$1x6 \text{ mm}^2$	$4x7.5 \text{ mm}^2$
Pad channels	5.7×10^5	1.25×10^5	$1-2 \times 10^6$	5.7×10^5
Readout Chamber	MWPC	MicroMegas	GEM/MicroMegas	GEM
Gain	12 mV/fC	0.2-17 mV/fC	12-27 mV/fC	20/30 mV/fC
Shaper	$CR-(RC)^4$	$CR-(RC)^2$	$CR-(RC)^4$	$CR-(RC)^4$
Peaking time	200 ns	50 ns-1us	30-120 ns	80/160 ns
ENC	385 e	850 e @ 200ns	520 e	482 e @ 180ns
Waveform Sampler	ADC	SCA	ADC	ADC
Sampling frequency	10 MSPS	1-100 MSPS	40 MSPS	20 MSPS
Dynamic range	10 bit	12 bit(external)	10 bit	10 bit
Power consumption	32 mW/ch	<10 mW/ch	47.3 mW/ch	8 mW/ch
CMOS Process	250 nm	350 nm	130 nm	130 nm

Chip Architecture

- In order to reduce the power consumption:
 - Using more advanced 65 nm CMOS process favoring digital logics
 - Reducing analog circuits:
 - $CR-(RC)^n \rightarrow CR-RC$, moving high order shaping to digital domain
 - ADC structure : pipeline → SAR (Successive Approximation Register)

Specifications

• Process: TSMC 65nm LP

• Power supply: 1.2V

AFE(Analog Front-End)		SAR-ADC		
Signal Polarity	Negative	Input Range	-0.6 V ~ 0.6 V diff.	
Detector Capacitance	5-20 pF	Resolution	10 bit	
Shaper	CR-RC	Sampling Rate	40 MS/s	
Shaping Time	160 ns	DNL	<0.6 LSB	
ENC (Equivalent Noise Charge)	<500 e @ 10pF	INL	<0.6 LSB	
Dynamic Range	120 fC max.	SFDR @ 2MHz, 40MSPS	68 dBc	
Gain	10-40 mV/fC	•		
INL (Integrated Non-Linearity)	<1%	SINAD	57 dB	
Crosstalk	<1%	ENOB	>9.2 bit @ 2MHz	
Power Consumption (AFE)	<2.5 mW/ch	Power Consumption (ADC)	<2.5 mW/ch	

The WASA_V0

The WASA V0:

- 16 channel AFE+ADC+LVDS data output
- The Power consumption of the AFE optimized from 2.02 mW/ch to 1.4 mW/ch
- ENC optimized from 589 e to 303 e @ 10 pF

Test Setup for WASA_V0

Test Setup

ASIC Test Board

Power Consumption

- The power consumption of the AFE: 1.43 mW/ch (1.40 mW/ch sim.)
- The power consumption of the ADC increases as the sampling rate

	AFE (mW/ch)	ADC (mW/ch)	Total (mW/ch)
Frist run (simulation)	1.93	1.0	2.93
First run (measured)	2.02	1.0	3.02
Second run (simulation)	1.40	1.0	2.40
Second run (measured)	1.43	1.06 @40MS/s	2.49

Transient Waveforms

- Transient outputs
 - Differential baseline can be externally adjusted

ADC Transient outputs @ 30MSPS

Non-Linearity

• Transient outputs

• The linearity @ gain = 10 mV/fC

Gain = 4.4 LSB/fC = 4.4 x 2.34 mV/fC = 10.3 mV/fC

Noise Performance

- The baseline fluctuation @ gain = 10 mV/fC
 - Significant contribution from ADC quantization noise

 $ENC = 19.8 \text{ e/pF} + 941e @ gain = 4.4 LSB/fC}$

Digital Trapezoidal Filter

- The waveform is symmetric, can achieve high SNR(signal to noise ratio)
- The ballistic deficit can be avoided
- Hardware resource is low cost, can be well implemented on chip
 - 2 multiplications ,6 additions and subtractions , some shift operations

Noise Performance with Trapezoidal Filter

- Noise performance @ $C_{in} = 2 pF$ @ 10 mV/fC
- Trapezoidal filter implemented in MATLAB
- The input simulation signal: output baseline of analog front end add the ADC quantization noise

- Experimental results: minimum ENC = 608 e @ 10 mV/fC
- Simulation results: minimum ENC = 470 e @ 10 mV/fC

Test Setup for WASA_V0 With TPC

TPC working conditions:

- GEM:310 V
- Working gas: T2K

Transient waveform

WASA_V1

- Digital signal processing:
 - Two stage baseline corrections, learnt from SAMPA
 - Digital trapezoidal filter, to make pulse shape symmetric and shorter
- Trigger logic with two stage data buffer (ring buffer and event buffer)

The Simulation Results of WASA_V1

Transient waveforms of key nodes

• Power consumption(simulation):1.4+1.0+4.1=6.5mW/ch@100 MS/s

The Layout of WASA_V1

- The floor plan in layout:
 - The die size : $3783 \mu m \times 2243 \mu m$
 - Analog Front-End , SAR ADC, Digital part, LVDS driver are supplied by separate power
 - Analog Front-End , SAR ADC,
 Digital part,LVDS driver are separated
 by guarding ring

Summary

- The WASA_V0 for TPC readout have been developed
 - The power consumption is 2.49 mW/channel:
 - $P_{AFE}=1.43 \text{ mW/channel}$
 - $P_{ADC} = 1.06 \text{ mW/channel } @ 40MS/s$
 - ENC = 852 e @ Cin=2 pF, gain=10 mV/fC and can be reduced to 608 e using digital trapezoidal filter
 - Based on WASA_V0, the WASA_V1 have also been developed, including AFE,
 SARADC, digital part.
- Future Plan
 - More tests with TPC detectors such as Fe-55 energy spectrum, laser

Thank You