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INTRODUCTION
• ongoing work aiming at maximising the physics potential of future collider experiments


• case study: τ-identification in the IDEA dual-readout calorimeter (DRC) concept


• leverage modern machine learning methods based on differentiable deep neural networks


• study performance using only standalone DRC information


• helps in optimising the detector and design of the readout electronics


• tasks studied: 

• classification of τ-decays and separation from QCD jets based on Graph Neural Networks (DGCNN)


• bayesian-DGCNN for robust estimation of NN predictions


• DGCNN-based object detection (eg identification of γ and n inside hadronic tau decays) for particle-flow algorithms


• part of a common effort in the DRC group to implement from start ML/DL methods in the design and development of the 
detector (see also Sanghyun Ko’s talk at this workshop)
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DRC PRINCIPLE
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different patterns of S vs C light from different particles, 
combined with the fine segmentation provided by the fibres 
can be leveraged for powerful particle identification … 

correct shower energy event by event for non-compensation by 
measuring the EM fraction in hadronic shower by sampling with two 
readouts of different e/h response: Cherenkov (C) mostly sensitive 
to the em shower component, Scintillation (S) sensitive to all

two equations in two 
unknowns: fem and E



IDEA DRC SIMULATION
• full G4 simulation of the calorimeter geometry: 


• includes B field and solenoid material in front of the 
calorimeter


• fiber-sampling calorimeter: Cu absorber, 1mm fibres, 
1.5mm pitch


• read out of each single fibre via SiPM


• 130 M channels, excellent granularity and lateral shape 
sensitivity: 
 
                      Δθ, Δϕ = ~0.035º


• parametrised simulation of SiPM readout and signal 
processing


• dark counts, crosstalk, afterpulses, saturation, noise, ... 
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DATASETS

• Pythia8 e+e- → Z → ττ and qq at Z pole 


• 5000 events for each decay mode
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• Information available for each fibre:


• geometrical quantities: Δθ, Δϕ wrt the tau/jet cluster center


• energetic quantities: # of photo-electrons in fibres and energy (scintillation and Cherenkov)


• SiPM information (1 SiPM per fibre): Integral and Peak of the SiPM output, Time of Arrival, Time over 
Threshold, Time of Peak


• Labels:


• fiber type (scintillating or cherenkov)


• decay type label
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DATA REPRESENTATION
• Image-based: treating the energy deposition on each fiber as 

the pixel intensity creates an image of the event in fixed-shape 
mesh


• natural representation for Convolutional Neural Networks


• unclear how to incorporate additional information of the fibers


• very sparse and inefficient representation: jets/tau decays 
have O(10) to O(100) particles → more than 90% of the pixels 
are blank 


• Point cloud-based: unordered sets of entities distributed 
irregularly in space, analogous to the point cloud 
representation of 3D shapes


• clouds allow rich internal structures


• easy to incorporate additional information of the fibers 
(fibre type, energy, time information, …) 


• the architecture of the neural network has to be carefully 
designed to fully exploit the potential of this representation 
→ Dynamic Graph CNN
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boosted W→qq’ fixed-mesh image graph

dim: 28x28 dim: 15x(3+1) + 18



DGCNN ARCHITECTURE
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Y. Wang et al., arXiv:1801.07829 [cs.CV]
H. Qu and L. Gouskos, arXiv:1902.08570 [hep-ph]

Input: 

x = {θ, ϕ, geometrical 
features, SiPM features, …}

- flexible architecture optimised for point cloud inputs able to learn both local (trough the edge convolution) 
and global (through the feature aggregator) structures


- simplify inclusion of additional features and SiPM signal timing information 

- # of input fibres fixed and treated as model hyper parameter, discarding those with lowest signals or adding 

zero valued vectors in case of events with lower active fibres

- hyper-parameters chosen using a validation set

local feature extractor feature aggregator MLP global 
classifier



EDGE CONVOLUTION
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Regular convolution operations cannot be applied on point clouds:

- points distribution is usually irregular (unlike uniform grids of the pixels in an image)

- they’re not invariant under permutation of the points 

A viable solution: EDGE convolution: point cloud represented as a graph with Vertices (the points themselves) and Edges 
(connections between each point to its k nearest neighbouring points): results in a regular distribution for each point, for 
which is possible to define convolution operations

Compute k-nn  
directed graph

Extract edge features with 
a shared linear layer

Aggregate edge 
features by  
max-pooling

CNN-conv

EDGE-conv

C =
8

∑
i=0

hiwi

ECi = ∑
q∈Np

f(hi, hq, wiq)



τ DECAY IDENTIFICATION WITH DGCNN
• Classification task:


• 8-classes: 7 tau decays + QCD jets


• training/validation/test sets: 22k/6k/7k events (balanced among classes)


• Data-preprocessing:


• simple geometrical clustering, no specific selection or fiducial volume applied


• saved fibres signal around the clusters (√Δθ2+Δϕ2) < 1)


• DGCNN inputs:


• jet/tau representation: 2D point-cloud of fibres coordinates 


• fiber type (S, C), #photo-electrons, SiPM’s: Integral and Peak of the SiPM output,  
ToT, ToA, ToP (in different combinations)  


• Data augmentation/regularisation: overfitting and memorisation for the DNN model controlled using 
dropout


• at input level: some of the fired fibres are switched off


• in the neural network layers: some of the parameters of the last MLP block are randomly  
zeroed during the training phase


• better generalisation obtained leveraging both methods
10

input level 
dropout



RESULTS  (input features: fibers coordinates, type (S, C),  w/ & w/o #p.e.)
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average accuracy: 
90.8%

using coordinates, type 
of fibre, and #of photo-
electrons in each fibre

average accuracy: 
88.3% 

using only coordinates and 
type for each fibre
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uncertainty on 
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RESULTS (input features: fibers coordinates, type (S, C), SiPM information)
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comparable identification performance with input from SiPM emulation   



UNCERTAINTY IN THE CLASSIFICATION: BAYESIAN-DGCNN
• Neural networks based on point values for weights may suffer of overconfidence when 

analysing new data especially concerning generalization in regions without examples in 
the training set 


• Bayesian neural networks solve the problem by introducing probability distributions over 
the weights and predicting distributions instead of point values 


• a Bayesian-NN learns a variational approximation of the true posterior distribution 
P(w|D), and predict an estimate of the expected value EP(w|D)[P(y|x,w)] → since the 
weights are random variables, each predictions is a random variable too


• allows to measure uncertainty, identify outliers in the input, regularise the whole model


• Designed and implemented in pytorch a full Bayesian version of a DGCNN (leveraging the 
Bayes by Backprop algorithm (https://arxiv.org/abs/1505.05424)
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S.Giagu, M. di Filippo, L.Torresi 

paper in preparation …

{1024}      {512, 256}      

https://arxiv.org/abs/1505.05424


RESULTS B-DCGNN
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distributions of softmax class probabilities 
sampling the model multiple times

confusion matrix

τ → μνντ → μνν

τ →πππντ →πππν

τ →πππν τ →πππν

τ →ππ0ν τ →ππ0ν

- same performance as with the DGCNN

- class probabilities better aligned with physics 

expectations

DGCNN B-DGCNN
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SEGMENTATION
• DGCNN and dual-readout calorimeter high granularity can also be exploited for object (particle) detection inside taus and jets


• a proto-step for a particle flow algorithm for taus and jets


• a similar approach as in segmentation in medical imaging (CT, MRI, …)


• DenseNet like modification of the DGCNN architecture for a segmentation task:


• identify the particle associated to the larger energy deposit in each fibre  


• label each fibre by extrapolating Monte Carlo truth particles from production to the DRC into the  
IDEA magnetic field


• train the DGCNN to predict the label associated to each fibre


• Ongoing study: initial tests only on photons/neutrons VS other particles identification in tau decays                                                 
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Segmentation

18

• Results:

• Accuracy: 91.3% 

• IoU (mean over labels): 53.6%

• Reconstruct energy identifying each secondary particle 

• First step -> classify directly at the level of each single fibre

• Slight modification of DGCNN architecture

skip connections to increase 
sensitivity to multiscale features … 



RESULTS SEGMENTATION
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Example: segmentation of two τ →ππ0ντ events
tau visibile energy reconstructed using:

- DRC for photons

- MC truth for other particles 


comparison of the distributions obtained when photons 
are identified by the DGCNN and when using the MC truth 

Examples of correct segmentation
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Ground Truth Reconstructed

Examples of correct segmentation
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Ground Truth Reconstructed

Eτ [GeV]

DGCNN
MC 
truth



SUMMARY
Very good performances in tau leptons identification obtained by leveraging geometrical deep learning models 
(DGCNN) using standalone dual readout calorimeter of the IDEA concept detector


• results based on full GEANT4 simulation of the IDEA detector geometry including B field, solenoid material 
effects, and parametric simulation of SiPM readout


• 91% average identification accuracy for a 8-class classification of QCD jets and leptonic and hadronic tau 
decay modes (88% using only geometrical information (fibre positions and types))


• developed a Bayesian-DGCNN for robust estimation of model prediction and uncertainties with 
comparable performances as the conventional DGCNN


• ongoing: identification of γ and n inside hadronic tau decays and QCD jets for proto particle-flow, promising 
initial results


extension the developed techniques with the use of the whole IDEA detector will follow soon …
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