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INTRODUCTION
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Jet: collimated spray of hadrons initiated by energetic quarks or gluons

Image credit

a proxy to access the properties of the q/g produced in the hard scattering

fundamental building blocks for object / event reconstruction: H->bb, H->cc, H->ss, H->gqg, ...
study of jet production and jet internal structures improves our understanding of QCD
Jet tagging: identifying the hard scattering particle that initiates the jet
heavy flavor tagging: bottom vs charm vs u/d/s/g
heavy resonance tagging: top/W/Z/Higgs
Recent years: the rise of machine learning (ML) has brought lots of new progresses

novel approaches and techniques lead to significant improvement in performance, and also deeper
insights into jet physics


http://www.hep.ph.ic.ac.uk/seminars/slides/2018/181115_Chisholm_ATLAS_Hcc.pdf

OUTLINE

In

(b)

In 1/A

ParticleNet: jet tagging via particle clouds

ParticleNeXt: pushing the limit of jet tagging

LundNet: graph neural network in the Lund plane



ParticleNet: jet tagging via particle clouds



ET AS A POINT CLOUD

CMS Experiment at the LHC, CERN
Data recorded: 2016-May-31 09:26:24.197376 GMT
Run / Event / LS¥274250 / 1058807020 / 543
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Point cloud Jet (Particle cloud)

From Wikipedia, the free encyclopedia From Wikipedia, the free encyclopedia

A point cloud is a set of data points in space. A jet (particle cloud) is a set of particles in space.
Point clouds are generally produced by 3D Particle clouds are generally created by clustering
scanners, which measure a large number of points a large number of particles measured by particle

EXPERIMENT

on the external surfaces of objects around them. detectors, e.g. @ATL AS and



POINT VS PARTICLE CLOUDS

Point cloud

points are intrinsically unordered

points are distributed in space

spatial coordinates (3D xyz) encode
geometric structure information

®

Particle cloud

particles are intrinsically unordered

particles are distributed in space

spatial distribution (2D coordinates
in the n-¢ space) reflects radiation
patterns

But particles have many more features:
energy/momentaldisplacement/particle ID/etc.

more interesting than a plain point cloud!



ARCHITECTURE: PARTICLENET

ParticleNet [Phys.Rev.D 0] (2020) 5, 056019]

customized graph neural network architecture for jet tagging with the point cloud approach, based on
Dynamic Graph CNN [Y.Wang et al., arXiv:1801.07829] —

explicitly respects the permutation symmetry of the point cloud = N
Key building block: EdgeConv

treating a point cloud as a graph: each point is a vertex

iiiii

for each point, a local patch is defined by finding its k-nearest neighbors

iiiii

EdgeConv block

designing a permutation-invariant ‘convolution” function

define “edge feature” for each center-neighbor pair: ej; = he(x;, x;)

same he for all neighbor points,and all center points, for symmetry

|
aggregate the edge features in a symmetric way: x;' = mean e;

EdgeConv Block

EdgeConv can be stacked to form a deep network
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EdgeConv Block
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EdgeConv Block

learning both local and global structures, in a hierarchical way
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.056019

PERFORMANCE OF PARTICLENET

Performance on the public top tagging benchmark dataset

ParticleNet achieves the highest performance among all algorithms

G. Kasieczka et al.
[SciPost Phys. 7 (2019) 014]

AUC | Acc 1/ep (es = 0.3) #Param
single mean median
CNN [16] 0.981 | 0.930 914+14 995415 975118 610k
ResNeXt [30] 0.984 | 0.936 | 1122447 1270428 1286431 1.46M
TopoDNN [18] 0.972 | 0.916 295+5 382+ 5 378 + 8 59k
Architecture Multi-body N-subjettiness 6 [24] | 0.979 | 0.922 792418  T798+12 808+13 57k
used by DeepAK8  Multi-body N-subjettiness 8 [24] | 0.981 | 0.929 867+15  918+20 926118 58k
. TreeNiN [43] 0.982 | 0.933 | 1025411 1202423 1188+24 34k
P-CNN 0.980 | 0.930 732424  845+13 834414 348k
ParticleNet [47] (Preliminary ver.) | 0.985 | 0.938 | 1208446 1412445 1393+41 | 498k
LBN [19] 0.981 | 0.931 836+17 859467 966120 705k
LoLa [22] 0.980 | 0.929 722417  T768*11 765411 127k
Energy Flow Polynomials [21] 0.980 | 0.932 384 1k
Ensemble of Energy Flow Network [23] 0.979 | 0.927 63331 729413 726411 82k
all taggers \ Particle Flow Network [23] 0.982 | 0.932 89118 1063+21 1052429 82k
GoaT 0.985 | 0.939 | 13684140 15494208 35k
ParticleNet-Lite 0.984 0.937 1262+49 26k
ParticleNet 0.98 0940 1615x93 366k



https://scipost.org/10.21468/SciPostPhys.7.1.014

PARTICLENET IN ACTION

ParticleNet has become a standard jet tagging algorithm in CMS

(13 TeV)
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https://cds.cern.ch/record/2707946/
https://cds.cern.ch/record/2777006/

PARTICLENET IN ACTION (ll)

ParticleNet has become a standard jet tagging algorithm in CMS

CMS-PAS-B2G-21-001

Search for VBF HH production

138 fb”' (13 TeV)
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Most stringent constraint on Kyy to date
0.6 <Kw<1l4

Kov = 0 excluded for the first time!

ParticleNet also being explored for detector design studies for future lepton colliders

see e.g.,talk by Michele Selvaggi at this workshop


http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/B2G-21-001/index.html
https://indico.ihep.ac.cn/event/14938/session/22/contribution/204
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ParticleNeXt: pushing the limit of jet tagging



PARTICLENEXT: PAIRWISE FEATURES

ParticleNeXt: next-generation of ParticleNet, for better performance

HQ [ML4Jets202 ]

The first enhancement is the addition of (explicit) pairwise features on the edges

ParticleNet ParticleNeXt

o o<

‘Qij — MLP(Xi, X]) 'Qij — MLP(Xl’, Xj, Xl:]')

kr = min(py;, pr) By 2

Examples of pairwise features:

A= 0i= )+ (di—¢)°, m*=(p+p)’,
min(pr,;, pr;)

Pri+ D1
(use the logarithm to improve stability of the training)



https://indico.cern.ch/event/980214/contributions/4413544/attachments/2277334/3868991/ParticleNeXt_ML4Jets2021_H_Qu.pdf

PARTICLENEXT: ATTENTIVE POOLING

Use attention-based pooling to increase the expressive power

for both the local neighborhood pooling, and the final global pooling

ParticleNet ParticleNe Xt
\ ®;j \ ;i
— ™
2] = meamj(eij) aH‘“zj = MLP( sz)

Wi = sof{'h«\axj(a/'fmlj)

2; = 2wy 2;j)



PARTICLENEXT: MULTI-SCALE AGGREGATION

Introduce multi-scale aggregation to better capture both short- and long-range correlations

perform local aggregation for the 4, 8,16 and 32 nearest neighbors (with different attentive
pooling) and combine the 4 aggregated representations with a MLP

on the other hand: remove dynamic kNN (based on learned features), i.e.,use only kNN in n—¢
space, to reduce computational cost

in this case the kNN needs to be performed only once, and then the graph connectivity is fixed

ParticleNet ParticleNeXt

N " "

concat



PERFORMANCE: TOP T AGGING
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— ParticleNet (AUC = 0.9979)
ParticleNeXt (AUC = 0.9982) ]

Delphes simulation w/ CMS-like detector
Training/validation/test splitting:
1.6M/04M / 2M

Training repeated for 3 times starting
from randomly initialized weights

Background efficiency
2
I
|

107°F the median-accuracy training is reported,
and the standard deviation of the 3
trainings is quoted as the uncertainty
103} Significant improvement in background
- rejection w/ ParticleNeXt
~50% higher BKG rejection (@¢eg = 70%)
10—4 A . .
0.0 0.2 0.4 6 08 10 computational cost still under control
Signal efficiency
Accuracy AUC 1/ep at Parameters Inference time Training time
es =T0% &5 ="50% (CPU)  (GPU) (GPU)
ParticleNet 0.980 0.0979  1342+4 6173 £425 366k 23ms  0.30 ms 1.0 ms
ParticleNeXt ~ 0.981  0.9982 2008 +75 8621+ 309 560k 30ms  0.54 ms 1.7 ms
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LundNet: graph neural network in the Lund plane



LUNDNET [ Dreperand Ho

The Lund jet plane provides an efficient description of the radiation patterns within a jet
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each emission (splitting) is mapped to a point in the 2D (angle, transverse momentum) plane
further emissions (of the secondary particles) are represented in additional leaf planes
different kinematic regimes are clearly separated in the Lund plane
a natural input for ML algorithms on jets since it essentially encodes the full radiation patterns of a jet
LundNet: a graph neural network based on the Lund plane representation of a jet

technically, the input is a binary tree (from Cambridge/Aachen clustering) <=> equivalent to the full Lund plane

for each node, a set of variables are be defined for the current splitting 70
A? = (ya - yb)2 + ((/ba - §bb)2’ kt = ptbAaba m2 = (pa +pb)2a )
_ Dw _ 1 Y Ya o
Z = , KR = ZA, = tan -,
pta+ptb w ¢b_¢a " »
network architecture similar to ParticleNet, but the graph structure is fixed THO  THO o O

by the Lund tree (instead of kNN) S O OO


https://inspirehep.net/authors/1332133
https://doi.org/10.1007/JHEP03(2021)052

PERFORMANCE OF LUNDNET

1/eqep

F. Dreyer and HQ
[JHEP 03 (2021) 052]

Significantly improved performance for top tagging compared to ParticleNet

similar performance for W tagging and g/g discrimination

Almost an order of magnitude speed-up in training/inference time compared to

ParticleNet

QCD rejection v. W tagging efficiency

QCD rejection v. Top tagging efficiency

1 =—— RecNN (LCBC '17)

Gluon rejection v. Quark tagging efficiency

Pythia 8.223 simulation
signal: pp - g4, background: pp- gg
anti-k; R =0.4 jets, p: > 500:GeV

Quark vs gluon

LundNet-5
LundNet-3

Lund+LSTM (DSS '18)
ParticleNet (QG:'19)
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Number of Training time Inference time
parameters [ms/sample/epoch]  [ms/sample]
LundNet 395k 0.472 0.117
ParticleNet 369k 3.488 1.036
Lund+LSTM 67k 0.424 0.131

EQuark

DGL + PyTorch
Nvidia GTX [080Ti
batch size = 256


https://inspirehep.net/authors/1332133
https://doi.org/10.1007/JHEP03(2021)052

ROBUSTNESS OF LUNDNET

Moreover, LundNet provides a systematic way to control the robustness
of the tagger

robustness assessed by applying the model trained on hadron-level
samples to parton-level samples and compare the difference

the non-perturbative region can be effectively rejected by applying a k:
cut on the Lund plane, therefore improving the robustness of the tagger
against non-perturbative effects

LundNet-3 shows much higher resilience than LundNet-5

QCD rejection v. W tagging efficiency

Pythia 8.223 simulation
signal: pp » WW, background: pp - jj performance v. resilience
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where Ae = € — € and () = 1/2(e+¢€)

€ : hadron-level

¢’ : parton-level

Better resilience to non-pert. effects —»


https://inspirehep.net/authors/1332133
https://doi.org/10.1007/JHEP03(2021)052

SUMMARY

Ink,

In 1/A

New ML-based approaches, especially Graph Neural Networks,
significantly improve the performance of jet tagging

allow direct use of high-dimensional low-level inputs
simultaneously exploit substructure and flavor information
Performance gains confirmed in real data
and translate to real gains physics analyses
Promising prospects for future HEP experiments

method applicable to a broad range of applications:

jet tagging, full event discrimination, end-to-end reconstruction, ...

exploiting underlying symmetry and physics principles proves
key to successful ML applications in HEP

l.e., geometric deep learning

deeper understanding and better control of systematics
remains an important topic for the future

20


https://geometricdeeplearning.com/

