Tracker Configuration optimization at the CEPC

Hao LIANG, Institute of High Energy Physics Manqi RUAN, Institute of High Energy Physics CEPC Workshop, November 11, 2021

Outline

- Introduction
- Methodology
 - Track p_T resolution modeling
 - Jet energy resolution modeling
- Optimization of tracker R/L for the track/jets
- Budget rather than the baseline
- Summary

Introduction

- Tracking system of the CEPC
 - Cylindrical configuration
 - Characterized by its radius (*R*) and length (*L*)
- Why is there an optimal *R* & *L*?
 - The average performance depends on the *R* & *L*
 - Construction cost also depends on R & L
 - With constraint of cost, optimal *R* & *L* exists to achieve best average performance
- CEPC runs:
 - Baseline scheme:
 - One Tera Z boson at CME of 91.2 GeV
 - One million Higgs bosons at CME of 240 GeV
 - Considering:
 - CME of 360 GeV for *t* quark/W boson fusion etc.
- Key physics objects:
 - Tracks
 - Jets
- Benchmark channels:
 - $Z \rightarrow \mu \mu / q @$ 91.2GeV
 - $Z + H \rightarrow \nu\nu + \mu\mu/qq$ @ 240GeV
 - *WW* fusion, $H \rightarrow \mu \mu / qq$ @ 360GeV ($\mu \mu$ for complement)
 - $tt \rightarrow bb\mu\nu_{\mu}ud$ @360GeV, μ and bb/ud for tracks and jets optimization, respectively

Methodology

- 1. modeling of the resolutions
 - $\operatorname{Res}(\Lambda; R, L)$ • (p_T, θ) for tracks (E, θ) for jets
- 2. obtain R vs. L with the constraint of cost
 - $\operatorname{Res}(\Lambda; R)$
- 3. calculate the average resolution employing the x-section of benchmark channels as weights: $\overline{\text{Res}(R)} = \frac{1}{\sigma} \int \text{Res}(\Lambda; R) \frac{d\sigma}{d\Lambda} d\Lambda$
- 4. obtain the optimal R&L

X-section

average resolution

2.4

Track p_T resolution modeling

• The effective radius (r) is important to determine p_T

Figure 2: Skeleton diagram of a sideview of the TPC and a trajectory of one particle (marked by the solid red line) hitting its endcap, which has a p_T of 1.8 GeV/*c* and a θ of 21°.

- = R for barrel, $\frac{L}{2} \tan \theta$ for endcaps
- bending radius of the track (ρ)
 - = $1.1E \sin\theta$ for a B-field of 3T (E in GeV/c, ρ in meter)
- With the case of $r\ll\rho$
 - $\sigma_{p_T} \propto r^{-2}$

Track p_T resolution modeling

- Taking account of the dependency on the p_T and the remaining dependency on the polar angle
- Parameters determined from the full simulation data at baseline detector (Mingrui Zhao, et al.)

$$\sigma_{p_T}/p_T = \frac{r^{-2}}{R_0^{-2}}(c_0 + c_1 \cos^2 \theta),$$

$$\ln c_0 = a_0 + b_0 \ln p_T + d_0 \ln^2 p_T,$$

$$c_1 = a_1 + b_1 \ln p_T + d_1 \ln^2 p_T.$$

Jet energy resolution modeling

- Similar parameterization strategy adopt to jet
- *r* can effect:
 - The tracks p_T resolution in jets
 - particles separation in particle flow

• JER =
$$\sqrt{b_1(E) + \frac{b_2(E)}{r+b_3}}$$

•
$$b_i(E) = c + \frac{d_i}{E}, i = 1,2$$

- Fall back to normal formula for particular θ
- Parameters in the formula extracted from full simulation data at baseline (Peizhu Lai, et al.)

- Cost estimation:
 - The volume or the surface area to the tracker
- Adopt constraint of the cost

Larger R, Smaller L better performance for the barrel, worse performance for the endcaps

The tracks favor longer tracker than the jets

- Optimal R range from 1.6 1.73 m for the tracks and 1.8 2.0 m for the jets
- Reason: bad performance of the tracks in the endcaps demands longer tracker

- Optimal Tracks performance
 - Mainly dependent on the polar distribution & energy
 - The more energic and forward distributed tracks have the worse performance
 - Tracks from Z, less energic but forward distributed, have comparable performance to the ZH
- Optimal jets performance
 - mainly dependent on the energy
 - The more energic jets have the better performance

- Tracks are more sensitive to the tracker configuration
- Degradations at baseline
 - Sub-percentage level for jets
 - About ten percent for jets

	<i></i>	Degradations (%) vs. radii (m)							
Benchmark	Cost estimator	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2
$Z \rightarrow \mu \mu$	volume	0.8	0.3	4.2	12.4	24.9	41.8	63.3	89.6
$\sqrt{s} = 91.2 \text{ GeV}$	surface area	1.4	0.0	2.3	8.5	19.0	34.6	56.3	86.1
$Z \rightarrow qq$	volume	1.6	0.7	0.2	0.0	0.1	0.5	1.1	1.9
$\sqrt{s} = 91.2 \text{ GeV}$	surface area	2.0	1.0	0.4	0.0	0.0	0.4	1.1	2.1
$ZH \rightarrow \nu \nu \mu \mu$	volume	6.9	1.6	0.0	2.2	7.9	17.3	30.4	47.4
$\sqrt{s} = 240 \text{ GeV}$	surface area	8.5	2.5	0.1	1.1	5.7	14.4	28.0	47.9
$ZH \rightarrow \nu \nu qq$	volume	3.1	1.8	0.9	0.3	0.0	0.0	0.3	0.7
$\sqrt{s} = 240 \text{ GeV}$	surface area	3.4	2.1	1.1	0.4	0.1	0.0	0.3	1.0
W fusion, $H \rightarrow \mu \mu$	volume	7.4	1.8	0.0	1.9	7.3	16.4	29.2	45.7
$\sqrt{s} = 360 \text{ GeV}$	surface area	9.0	2.9	0.1	0.9	5.2	13.6	27.0	46.4
W fusion, $H \rightarrow qq$	volume	3.1	1.8	0.9	0.3	0.0	0.0	0.3	0.8
$\sqrt{s} = 360 \text{ GeV}$	surface area	3.4	2.1	1.1	0.4	0.1	0.0	0.3	1.0
μ, bbμv _μ ud	volume	3.7	0.3	0.8	5.1	13.2	25.2	41.1	61.2
$\sqrt{s} = 360 \text{ GeV}$	surface area	5.0	0.8	0.2	3.1	9.8	20.9	37.3	60.5
$ud, bb\mu\nu_{\mu}ud$	volume	2.9	1.7	0.9	0.3	0.0	0.0	0.3	0.7
$\sqrt{s} = 360 \text{ GeV}$	surface area	3.2	2.0	1.1	0.4	0.1	0.0	0.3	0.9
bb, bbμv _μ ud	volume	3.1	1.9	0.9	0.3	0.0	0.0	0.3	0.7
$\sqrt{s} = 360 \text{ GeV}$	surface area	3.4	2.1	1.1	0.4	0.1	0.0	0.3	1.0

- Z @91.2 favor a longer tracker than the other processes
 - For both the tracks and the jets
 - Physics objects in the former process: forward distribution

Tracks have similar distributions to the jets Generated with WHIZARD

Budget rather than the baseline

- Larger budget, better performance
- Tracks:
 - *R/L* is independent to the budget due to the simplicity of the modeling
 - Performance ~ scale⁻²
- Jets:
 - *R*/*L* : weak dependency on the budget.
 - Deeper valley for jets as R increases, to achieve good average performance, put more resource on the tracker length.

Solid lines for the tracks Dotted lines for the jets

Summary

- Optimal R/L obtained for the baseline
 - Jets & tracks compared
 - Tracks favor longer tracker than the jets
 - Polar angular distribution of tracks affect the optimization more than the jets
 - Tracks are more sensitive to the track configuration
 - Z, ZH, W boson fusion, and tt processes compared
 - Z process favor longer tracker due to the forward polar distribution of physics objects
- Optimal R/L vs. construction cost
 - Weak dependency of R/L on construction cost for tracks/jets
 - The larger budget leads to the longer tracker for the jets