Prospects for supersymmetric searches at CEPC

Da XU (IHEP, CAS) CEPC workshop 2021

中国科学院高能物理研究所

Institute of High Energy Physics Chinese Academy of Sciences

A theory to describe physics beyond the Standard Model, with additional symmetry introduced: fermions ~ bosons

ntroduced: termions ~ bosons

If weak-scale SUSY existed, it could... Moderate the hierarchy problem Realize grand unification of gauge couplings Provide a suitable dark matter candidate

Where is SUSY hiding?

Hadron collider

For slepton prod. of 100 GeV, similar scale in LHC (~10^-1 pb) and CEPC (~10^2 fb). Lepton collider can be powerful to probe the low mass region.

SUSY search in EU strategy

CERN-ESU-004

Gap in low NLSP mass region can be probed by CEPC.

SUSY @ CEPC

The electroweak SUSY search is of great interest at CEPC: the generic searches for wino/higgsino/bino/slepton, as well as the relevant dark matter searches.

With cleaner collision environment and better efficiency for low energy particles, the search with CEPC has the capability of probing super compressed scenarios — extremely challenge for the LHC experiments!

SUSY topics in CEPC

A wide range of SUSY topics has been studied

Wino-bino search via chargino pair Higgsino search via chargino pair Direct stau search Direct smuon search

Techniques in CEPC analysis

Ecm: 240 GeV Tunnel ~100km Luminosity: 5050 fb-1

CEPC detector concepts

 a particle-flow oriented detector equipped with an ultra-high granularity calorimeter, a low-material tracker and a 3 Tesla solenoid

Software:

- SUSY Signal sample: MadGraph+Pythia
- Standard Model MC sample: Whizard
- Simulation (particle/detector): MokkaC
- Track reconstruction: Clupatra
- Object reconstruction: Arbor(particle flow algorithm)
- Lepton identification: LICH based on Multivariate Data Analysis (TMVA)

Muon ID in CEPC

Eur. Phys. J. C (2017) 77:591

Muon is the main object of interest in the following analyses. The identification efficiency is :

- ~ 99.9% with energy above 2 GeV;
- < 90% for energy below
 1.3 GeV and at the edge
 of the barrel region
 (barrel2) or the overlap
 region.

arXIV:2105.06135

A challenge scenario for LHC experiment in the low mass region!

- Study wino mass ranging from 90GeV (LEP limit) to ~<120GeV(CEPC limit)
- Signal generated with 100% BR of C1->W
- Ref. Point: 100_1, 100_10, 100_25 with cross-section (LO) = 2789 fb

Chargino (Bino LSP)

 $m(\widetilde{\chi}_{1}^{\pm})$ [GeV]

First look after two OS muons (E μ >10GeV) selection

- Background: peak ~ Z(->mumu) mass region and tend to have large deltaR
- Recoil system is then defined as all particles except two OS muons: signal has larger recoil mass due to missing energy.

Process

 $ZZorWW \rightarrow \mu\mu\nu\nu$

 $\begin{array}{c} \mu\mu\\ WW \to \ell\ell \end{array}$

 $\tau \tau$

 $\nu Z, Z \rightarrow \mu \mu$

 $ZZ \rightarrow \mu\mu\nu\nu$

Others

Total background

m ($\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0$) = (110, 1) GeV

m ($\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{0}$) = (110, 10) GeV

m ($\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{0}$) = (110, 25) GeV

- Δ**R(μ⁺,μ[−]): reject** ττ and μμ
- $P^{\mu^{\pm}}$ > 30 GeV: suppress soft muon processes
- Mrecoil: high in signal case due to large missing energy from N1 -> most powerful cut
- **Dominant background: ZZ or WW** $\rightarrow \mu\mu\nu\nu\nu$ and $\mu\mu$

$$Zn = \left[2\left((s+b)\ln\left[\frac{(s+b)(b+\sigma_b^2)}{b^2+(s+b)\sigma_b^2}\right] - \frac{b^2}{\sigma_b^2}\ln\left[1 + \frac{\sigma_b^2 s}{b(b+\sigma_b^2)}\right]\right)\right]^{1/2}$$
 11

Great discovery sensitivity coverage, up to the detector constraint.

Fill in the LHC challenge region.

No large impact from the uncertainty on the discovery sensitivity.

arXIV:2105.06135

Motivated by Naturalness; challenge in compressed region.

- Higgsino is designed for μ -tan β phase space
- Corresponding to low mass splitting of dM(c1,n1)~<2GeV
- Signal with 100% BR of C1->W
- Ref. Point: 90_30, 106_30, 118_30 with crosssection (LO) = 1966 fb, 1522.9 fb and 681.2 fb.

Chargino (Higgsino LSP)

First look after two OS muons (E μ >1GeV) selection

 Unlike wino-bino case, the higgsino signal has much softer muons while much larger recoil mass!

Signal Region
== 2 muons (OS)
$E_{\mu^{\pm}} > 1.0 \text{ GeV}$
$3.2 < \Delta R(\mu^{\pm}, recoil) < 4.6$
$ \Delta \phi(\mu^{\pm}, recoil) < 2.9$
$ \Delta \phi(\mu^+,\mu^-) < 1.4$
$M_{recoil} > 237.5 \text{ GeV}$

- Softer muon due to small signal mass splitting
- $\Delta R(\mu, recoil)$: retain signal/suppress background
- $|\Delta \varphi(\mu^{+}, \mu^{-})| < 1.4$: suppress two muons back to back
- Mrecoil: much significant for signal, tighter than the wino case due to higher missing energy
- Dominant background: ττ

Nice discovery sensitivity coverage, up to the detector constraint.

Interpreted in both μ -tan β and C1-dM scenarios.

According to the current result, there are large potential to explore to even compressed region!

Smuon search

Favored by muon g-2 excess. Explore soft smuon in CEPC.

- \cdot Signal sample designed in $\mu\tilde{}$ and LSP mass phase space
- $\cdot \; \mu \tilde{} \; \mbox{mass}$ is bounded by LEP/CEPC limit; LSP is bounded by the $\mu \tilde{} \; \mbox{mass}$
- \cdot Slepton decay into a lepton and a LSP with 100% BR
- Ref. Point: 115_20, 115_70, 115_110 with cross-section (LO) = 23.6 fb

Direct stau/smuon

Smuon search

- 3 SR categories according to different mass splitting
- For large dM, high μ energy
 - For small dM, high Mrecoil

Smuon search

(a) systematic uncertainty = 5% (b) comparison between systematic uncertainty = 0% and 5%

Great discovery sensitivity coverage, up to the detector constraint.

With flat 5% systematic, the discovery sensitivity can reach up to 117 GeV in smuon mass.

Fill in the LHC challenge region. No large impact from the uncertainty.

Stau search

Favored by dark matter relic density measurement. Explore soft stau in CEPC.

- Signal sample designed in τ and LSP mass phase space
 - τ mass is bounded by LEP/CEPC limit; LSP is bounded by the τ mass
 - Stau decay into a tau and a LSP with 100% BR
 - Ref. Point: 115_20, 115_60, 115_100 with cross-section (LO) = 23.6 fb

Direct stau/smuon

Stau search

SR-highDeltaM	SR-midDeltaM	SR-lowDeltaM
$E_{\tau^{\pm}} < 34 \text{ GeV}$	$E_{ au^{\pm}} < 1$	5 GeV
$sumP_T > 70 \text{ GeV}$	$sumP_T > 40 \text{ GeV}$	-
-	$0.2 < \Delta \phi(au, au) < 1.2$	$ \Delta \phi(au, au) > 0.6$
$2.4 < \Delta \phi $	$(au^{\pm}, recoil) < 3$	$ \Delta \phi(\tau^{\pm}, recoil) > 2.3$
$0.4 < \Delta R(\tau, \tau) < 1$	$0.4 < \Delta R(\tau, \tau) < 1.6$	-
$\Delta R(au^{\pm},$	(recoil) < 3.1	$\Delta R(\tau^{\pm}, recoil) < 2.9$
$M_{\tau\tau}$ <50 GeV	$M_{\tau\tau}$ <40 GeV	$M_{ au au}$ <18 GeV
$M_{recoil} > 90 \text{GeV}$	$M_{recoil} > 130 \text{GeV}$	$M_{recoil} > 210 \text{ GeV}$

3 SR categories according to different mass splitting

ZZorWW→ττ

νΖ,Ζ→ττ

WW→II

ZZ→µµ

25

30

M_{ττ}

evW,W→µv

μμ

- **For large dM**, high τ energy •
- For small dM, high Mrecoil •

15

20

Stau search

(a) systematic uncertainty = 5% (b) comparison between systematic uncertainty = 0% and 5 %

For direct stau production with left-/right- combined(only) stau, assuming flat 5% systematic uncertainty, the discovery sensitivity can reach up to 116 GeV (113 GeV) in stau mass.

Great power to fill the LHC gap!

Summary

- Various prospective searches for sleptons and electroweakinos have been performed with CEPC.
- The discovery potential is high, close to the kinematic limit of the detector: $\sqrt{s/2}$.
 - The results can be referenced by other lepton colliders as ILC, FCC-ee etc.
- A lepton collider is not just a precision-measurement machine, it has the discovery advantage in many challenge scenarios which can be difficult for a hadronic collider.

Extra slides

3 The two fermions background

There are two different topological structure of two fermions Feynman diagrams. One is in s-channel, like in Fig.2, the other is in t-channel, shown as Fig.2. The t-channel can be classified still further according to its intermediate state. The information about the two fermions samples is listed in Tab.6.

14010 0.		/ uie 2 ieiiii	ions ouchground
Process	Cross section [fb]	Error [fb]	ILC result [fb]
uu	9995.35	23.2	10110.43
dd	9808.71	25.7	10010.07
сс	9974.20	28.9	10102.75
SS	9805.39	74.7	9924.40
bb	9803.04	25.5	9957.70
qq	49561.30	120.0	50105.35
e2e2	4967.58	35.0	4991.91
e3e3	4374.94	10.5	4432.18
bhabha	24992.21	41.50	24937.95

Table 6: The cross section for the 2 fermions background

It should be noted that the two fermions samples are generated under the averaged polarization.

Figure 2: The diagrams of the two fermions processes

	process	${=}2\mu({\rm OS}, {\rm energy}_{i}{:}10{\rm GeV})$	$0.4;\Delta R(\mu,\mu);1.6$	Mrecoil ¿ 130 GeV	P_T^{μ} ; 30 GeV/c
\neg SM Total \neg \uparrow \uparrow	(110,1)	$161984{\pm}683.611$	46791.8±367.416	32560.1±306.49	$5937.33{\pm}130.879$
ZZ→μμ ZZorWW→μμ –	(110,10)	170754 ± 701.874	52547.4±389.357	$37620.4 {\pm} 329.446$	6468.17±136.604
WW→II Others	(110,25)	174808±710.156	51278±384.626	37559.8±329.181	8470.36±156.323
- (μ, tan β) = (90, 30) GeV (μ, tan β) = (106, 30) GeV	ττ	322331±855.076	2808.2±79.812	2592.71±76.6886	88.4652±14.1658
$(\mu, \tan\beta) = (100, 00) \ \text{GeV}$	vvH, H ightarrow au au	229.299±5.96235	-		
Ξ	$ZZorWW \rightarrow \tau \tau \nu \nu$	11912.5±93.9421	280.774±14.4224	$280.774 {\pm} 14.4224$	$0.740828 {\pm} 0.740828$
	$ZZ \rightarrow \tau \tau \nu \nu$	403.726±14.5777	33.1614±4.17794	32.1086±4.11109	
	vZ, Z ightarrow au au	720.662±27.2774	61.948±7.99745	61.948±7.99745) -
	$ZZorWW \rightarrow \mu\mu\nu\nu$	872793±965.476	41217.3±209.81	$23016.5 {\pm} 156.785$	1631.9±41.7477
	$ZZ \rightarrow \mu\mu\nu\nu$	40228.7±235.959	4367.9±77.7508	871.92±34.7381	27.68±6.18944
	$WW ightarrow \ell\ell$	228461±483.442	7432.1±87.1954	$6559.48 {\pm} 81.9167$	162.657 ± 12.8995
E	$ u Z, Z ightarrow \mu \mu$	60942.3±260.44	7349.14±90.4411	3333.44±60.9107	47.859±7.29843
	μμ	1.58973e+07±9837.01	232292±1189.1	19374.9±343.417	608.7±60.87
	$evW, W ightarrow \mu v$	(*)			
	evW, W ightarrow au v	9.063±3.021			17
	$eeZ, Z \rightarrow vv$	100	-	÷.	æ.,
M _{uu} [GeV]	$eeZ, Z \rightarrow vv$ or $evW, W \rightarrow ev$				
	total background	1.74353e+07±9939.68	295843±1219.21	56123.8±400.392	2568.01±76.8585

process	$=2\mu(OS)$	$E_{\mu\delta}0.95$ GeV	$3.2;\Delta R(\mu, recoil); 4.6$	$\Delta \phi(\mu, recoil)$;2.9	Mrecoil & 237.5 GeV
(90,30)	3867.16±120.263	3803.58±119.27	2434.74±95.425	826.54±55.5991	546.04±45.1906
(118,30)	2245.1±54.0243	2198.3±53.4583	$1280.5 {\pm} 40.8001$	412.1±23.1458	400.4 ± 22.8149
(118,10)	$1621.62{\pm}48.1551$	1578.72 ± 47.5139	785.07±33.506	207.35±17.2195	$201.63{\pm}16.9803$
TT	601598±1168.19	557650±1124.71	362032±906.219	2635.88±77.3255	117.957±16.3577
$vvH, H \rightarrow \tau \tau$	451.05±8.36138	424.855 ± 8.11496	148.49±4.79749	18.135±1.67658	0.155±0.155
$ZZorWW \to \tau\tau\nu\nu$	31629.6±180.714	29273.4±173.853	14978.5±124.359	$1824.43{\pm}43.4019$	3.0975 ± 1.78834
$ZZ\to\tau\tau\nu\nu$	$1395.49{\pm}27.1032$	$1200.19{\pm}25.1353$	463.232±15.6155	$38.4272 {\pm} 4.49756$	0.5264 ± 0.5264
$vZ,Z \to \tau\tau$	$2390.56 {\pm} 42.0824$	$1845.33 {\pm} 36.9733$	$690.426 {\pm} 22.6156$	$61.4864 {\pm} 6.74901$	20
$ZZorWW \rightarrow \mu\mu\nu\nu$	906723±984.063	905997±983.669	502054±732.252	105817 ± 336.174	4.272±2.136
$ZZ \rightarrow \mu \mu \nu \nu$	49490.5±261.715	48878.7±260.093	21301.1±171.7	$1238.68{\pm}41.4045$	$5.536 {\pm} 2.768$
$WW \rightarrow \ell \ell$	$315375 {\pm} 568.004$	304846 ± 558.442	$158570 {\pm} 402.762$	$16007.9 {\pm} 127.969$	$1.023 {\pm} 1.023$
$vZ, Z \rightarrow \mu\mu$	$105339 {\pm} 342.406$	$99931.8{\pm}333.503$	46372±227.183	$3165.37 {\pm} 59.3554$	$36.729 {\pm} 6.3937$
μμ	1.77661e+07±10399.1	1.77487e+07±10394	1.21686e+07±8606.42	103881±795.187	48.696±17.2166
$evW, W \rightarrow \mu v$		1.00	1.0	12 I I	18
$evW, W \rightarrow \tau v$	24.168±4.93327	24.168±4.93327	19.133±4.38941	1.007 ± 1.007	1.007 ± 1.007
$eeZ, Z \rightarrow vv$				×	\sim
$eeZ, Z \rightarrow vv$ or $evW, W \rightarrow ev$			-		-
total background	1.97805e+07±10536.5	1.96987e+07±10525.8	1.32753e+07±8699.85	234690±880.273	218.999±24.9529

ATLAS SUSY Searches* - 95% CL Lower Limits

A Ju	TLAS SUSY Sea	rches*	- 95%	CL	L Lov	ver	Limits						ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}$
	Model	S	ignature	e j	£ dt [fb-1	1		Mass limit					Reference
ş	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{t}_{1}^{0}$	0 e.µ mono-jet	2-8 jets 1-3 jets	$\begin{array}{c} E_T^{miss} \\ E_T^{miss} \\ E_T^{miss} \end{array}$	139 36.1		8x Degen.) Degen.)		1.0 0.9		1.85	m(ℓ ₁ ⁰)<400 GeV m(ℓ ₁)·m(ℓ ₁ ⁰)=5 GeV	2010.14293 2102.10674
arche	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{x}_{1}^{0}$	0 e.µ	2-6 jets	$E_T^{\rm miss}$	139	ALC: NO			Forbidder	1.	2.3	$m(\hat{x}_{1}^{0})=0 \text{ GeV}$ $m(\hat{x}_{1}^{0})=1000 \text{ GeV}$	2010.14293 2010.14293
sive Se	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} W \tilde{x}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} (\ell \ell) \tilde{\xi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\xi}_{1}^{0}$	1 e,μ ee,μμ 0 e,μ	2-6 jets 2 jets 7-11 jets	E_T^{miss} E_T^{miss}	139 36.1 139	iba ste ibe				1.2	2.2	$m(\tilde{t}_{1}^{0}) < 600 \text{ GeV}$ $m(\tilde{g}) \cdot m(\tilde{t}_{1}^{0}) = 50 \text{ GeV}$ $m(\tilde{t}_{1}^{0}) < 600 \text{ GeV}$	2101.01629 1805.11381 2008.06032
Inclu	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\tilde{\mathcal{I}}_{1}^{0}$	SS e.μ 0-1 e.μ SS e.μ	6 jets 3 b 6 jets	E_T^{miss}	139 79.8 139	Alle File All				1.15	2.25	m(g)-m(\tilde{t}_1^0)=200 GeV m(\tilde{t}_1^0)<200 GeV m(\tilde{t}_2^0)=200 GeV	1909.08457 ATLAS-CONF-2018-041 1909.08457
	$\bar{b}_1 \bar{b}_1$	0 e,µ	2 b	E_T^{miss}	139	8 81			0.00	1.255		m(t ⁰ ₁)<400 GeV	2101.12527
sh noi	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 {\rightarrow} b \tilde{t}_2^0 {\rightarrow} b h \tilde{t}_1^0$	0 e,μ 2τ	6 b 2 b	E_{T}^{miss} E_{T}^{miss}	139 139	δ1 δ1 δ1	Forbidden		0.13-0.85	0.23-1.35	$\Delta m(\tilde{k}_{\pm}^0, \tilde{k}_{\pm}^0)$ $\Delta m(\tilde{k}_{\pm}^0, \tilde{k}_{\pm}^0)$	10 GeV< <u>A</u> m(b ₁ , X ₁)<20 GeV =130 GeV, m(t ₁)=100 GeV (t ₁)=130 GeV, m(t ₁)=0 GeV	1908.03122 ATLAS-CONF-2020-031
⁴ gen. squat	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\mathcal{K}}_1^0$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\mathcal{K}}_1^0$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 b v, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1^0 / \tilde{c} \tilde{t}, \tilde{c} \rightarrow c \tilde{c}_1^0$	0-1 e,μ 1 e,μ 1-2 τ 0 e,μ	≥ 1 jet 3 jets/1 b 2 jets/1 b 2 c	E_T^{miss} E_T^{miss} E_T^{miss} E_T^{miss}	139 139 139 36.1	τ ₁ τ ₁ τ ₁ τ ₁ ε		Forbidden	0.65 Forbidden 0.85	1.25 1.4		m(ℓ ₁ ⁰)=1 GeV m(ℓ ₁ ⁰)=500 GeV m(ℓ ₁)=800 GeV m(ℓ ₁)=800 GeV	2004.14060,2012.03799 2012.03799 ATLAS-CONF-2021-008 1805.01649
ыg	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{t}_2^0, \tilde{t}_2^0 \rightarrow Z/b\tilde{t}_1^0$ $\tilde{t}_2\tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	0 e,μ 1-2 e,μ 3 e,μ	mono-jet 1-4 b 1 b	E_T^{triss} E_T^{triss} E_T^{triss}	139 139 139	ī ₁ ī ₁ ī ₂		0 Forbidden	55 0.067 0.86	7-1.18	$m(\bar{k}_{1}^{0})=360$	$m(\tilde{r}_1, \tilde{c}) \cdot m(\tilde{r}_1^d) = 5 \text{ GeV}$ $m(\tilde{t}_2^d) = 500 \text{ GeV}$ $0 \text{ GeV}, m(\tilde{r}_1) \cdot m(\tilde{s}_1^d) = 40 \text{ GeV}$	2102.10874 2006.05880 2006.05880
	$\tilde{x}_1^{\pm} \tilde{x}_2^0$ via WZ	Multiple ℓ/jet ee, μμ	s ≥ljet	$\begin{array}{c} E_T^{miss} \\ E_T^{miss} \end{array}$	139 139	$\begin{array}{c} \hat{\boldsymbol{\chi}}_{1}^{a} / \hat{\boldsymbol{\chi}}_{2}^{b} \\ \hat{\boldsymbol{\chi}}_{1}^{\pm} / \hat{\boldsymbol{\chi}}_{2}^{b} \end{array}$	0.205		0.96		m($m(\tilde{k}_1^0)=0$, wino-bino $\tilde{k}_1^0)=m(\tilde{k}_1^0)=5$ GeV, wino-bino	2106.01676, ATLAS-CONF-2021-022 1911.12606
EW direct	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via WW $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via $\tilde{\ell}_{\ell_*}/\tilde{\nu}$ $\tilde{\tau}_{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\ell}_1^0$ $\tilde{\chi}_1^{\mp} \tilde{\chi}_1^{\mp} = \tau \tilde{\chi}_1^0$	2 e,μ Multiple ℓ/jet 2 e,μ 2 τ	5 O loto	E_T^{miss} E_T^{miss} E_T^{miss} E_T^{miss} E_T^{miss}	139 139 139 139	x [±] ₁ x [±] ₁ /x [±] ₂ x [±] ₁ x [±] ₁ x [±] ₁ x [±] ₁	Forbiddon [†] R.J.] 0.1	0.42	1. 1.0	06		$m(\tilde{k}_{1}^{0})=0$, wino-bino $m(\tilde{k}_{1}^{0})=70$ GeV, wino-bino $m(\tilde{\ell},\tilde{r})=0.5(m(\tilde{k}_{1}^{0})+m(\tilde{k}_{1}^{0}))$ $m(\tilde{k}_{1}^{0})=0$	1908.08215 2004.10894, ATLAS-CONF-2021-022 1908.08215 1911.06660
	$\hat{H}\hat{H}, \hat{H} \rightarrow h\hat{G}/Z\hat{G}$	се, µµ 0 е, µ 4 е, µ 0 е, µ	≥ 1 jet ≥ 3 b 0 jets ≥ 2 large jets	E_T^{miss} E_T^{miss} E_T^{miss} E_T^{miss} E_T^{miss}	139 36.1 139 139	t R R R	0.25	6	0.29-0.88 55 0.45-0.93			$m(\tilde{c}_1)=0$ $m(\tilde{c}_1)=10$ GeV $BR(\tilde{c}_1^0 \rightarrow kG)=1$ $BR(\tilde{c}_1^0 \rightarrow 2G)=1$ $BR(\tilde{c}_1^0 \rightarrow 2G)=1$	1911.12605 1805.04030 2103.11684 ATLAS-CONF-2021-022
p s	$\operatorname{Direct} \tilde{\chi}_1^* \tilde{\chi}_1^*$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	E_T^{miss}	139	\hat{x}_{1}^{\pm} \hat{x}_{1}^{\pm}	0.21		0.66	_		Pure Wino Pure higgsino	ATLAS-CONF-2021-015 ATLAS-CONF-2021-015
Long-live particle.	Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow q \varphi \tilde{k}_{1}^{0}$ $\tilde{\ell}\tilde{\ell}, \tilde{\ell} \rightarrow \ell \tilde{G}$	Displ. lep	Multiple Multiple	E_T^{miss}	36.1 36.1 139	8 8 [τ(ĝ 8,μ 9) =10 ns, 0.2 ns]	0.34	0.7		2.0 2.05 2.4	$m(\vec{\ell}_{1}^{0})=100 \text{ GeV}$ $\pi(\vec{\ell})=0.1 \text{ ns}$ $\pi(\vec{\ell})=0.1 \text{ ns}$	1902.01535,1808.04095 1710.04901,1808.04095 2011.07812 2011.07812
RPV	$\begin{array}{l} \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{+}/\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{+} \rightarrow Z\ell \rightarrow \ell\ell\ell \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{+}/\tilde{\chi}_{2}^{0} \rightarrow WW/Z\ell\ell\ell\ell\nu\nu \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq \\ \tilde{u}, \tilde{t} \rightarrow t\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow tbs \\ \tilde{u}, \tilde{t} \rightarrow b\tilde{\chi}_{1}^{+}, \tilde{\chi}_{1}^{+} \rightarrow bbs \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow bs \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow q\ell \end{array}$	3 е.µ 4 е.µ 2 е.µ	0 jets 4-5 large jets Multiple ≥ 4b 2 jets + 2 b 2 b	E_T^{miss}	139 139 36.1 36.1 139 36.7 36.1	$\hat{X}_{1}^{+}/\hat{X}_{1}^{0}$ $\hat{X}_{1}^{+}/\hat{X}_{2}^{0}$ $\hat{x} = [m\hat{0}]$ $\hat{i} = [D_{123}^{*}]$ $\hat{i} = [qq, \tilde{i}]$ $\hat{i} = [qq, \tilde{i}]$	$[BR(Z_T)=1, BR(Z_T)=$ $[\lambda_{00} \neq 0, \lambda_{12k} \neq 0]$ $\Gamma_1^0=200 \text{ GeV}, 1100 \text{ G}=$ 2e-4, 1e-2] bx]	=1] ieV] 0 Forb/dden 0.42	0.625 1.0 0.95 55 1.0 0.95 0.61	05 1.5 1.3 05 0.4-1.45	5 1.9	Pure Wino $m(\tilde{k}_{1}^{0})=200 \text{ GeV}$ Large \mathcal{X}_{112}^{0} $m(\tilde{k}_{1}^{0})=200 \text{ GeV}, \text{ bino-like}$ $m(\tilde{k}_{1}^{2})=500 \text{ GeV}$ $\text{BR}(\ell_{1}\rightarrow be/lay)>20\%$	2011.10543 2103.11684 1804.03568 ATLAS-CONF-2018-003 2010.01015 1710.07171 1710.05844
	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0/\tilde{\chi}_1^0, \tilde{\chi}_{1,2}^0 {\rightarrow} tbs, \tilde{\chi}_1^+ {\rightarrow} bbs$	1μ 1-2 e,μ	DV ≥6 jets		136 139	\tilde{x}_1 [1e $\tilde{\chi}_1^0$	-10< x ₁₀ <10-8, 30-	0.2-0.32	1.0	1	.6	BR(<i>i</i> ₁ →qu)=100%, cosθ,=1 Pure higgsino	2003.11956 ATLAS-CONF-2021-007
Octo	e coloction of the sublished	en limite en	oou dataa			2-1				1			
pher	omena is shown. Many of the	limits are ba	sed on	s Or	10						м	lass scale [TeV]	

Fig. 8.14: Summary of 2σ sensitivity reach to pure Higgsinos and Winos at future colliders. Current indirect DM detection constraints (which suffer from unknown halo-modelling uncertainties) and projections for future direct DM detection (which suffer from uncertainties on the Wino-nucleon cross section) are also indicated. The vertical line shows the mass corresponding to DM thermal relic.

TECHNICAL DETAIL

About CEPC

ECM=240GeV, higgs factory, 100 km circumference, 2 interaction points. ILD-like detector

Software

Signal samples: MadGraph+Pythia8

Simulation: Mokka

Reconstruction: Marlin

- Normalized to 5050 fb⁻¹
- Dominant backgrounds:

> SM processes with two-e or two- μ or two- τ and large missing energy final states.

process	Cross Section [fb]
μμ	4967.58
ττ	4374.94
$WW \to \ell\ell$	392.96
$ZZorWW \rightarrow \mu\mu\nu\nu$	214.81
$ZZorWW \rightarrow \tau \tau \nu \nu$	205.84
$\nu Z, Z \rightarrow \mu \mu$	43.33
$ZZ \rightarrow \mu\mu\nu\nu$	18.17
$\nu Z, Z \rightarrow \tau \tau$	14.57
$ZZ \rightarrow \tau \tau \nu \nu$	9.2
$\nu\nu H, H \rightarrow \tau\tau$	3.07
$e\nu W, W \to \mu \nu$	429.2
$evW, W \rightarrow \tau v$	429.42
$eeZ, Z \rightarrow \nu\nu$	29.62
$eeZ,Z \rightarrow \nu\nu \; or \; e\nu W, W \rightarrow e\nu$	249.34

Key parameters of the CEPC-SPPC

- Tunnel ~ 100 km
- CEPC (90 250 GeV)
 - Higgs factory: 1M Higgs boson
 - Absolute measurements of Higgs boson width and couplings
 - Searching for exotic Higgs decay modes (New Physics)
 - Z & W factory: ~ 1 Tera Z boson Energy Booster(4.5Km)
 - Precision test of the SM
 Low Energy Booster(0.4Km)

Booster(50Km

- Rare decay
- Flavor factory: b, c, tau and QCD studies
- SPPC (~ 100 TeV)
 - Direct search for new physics
 - Complementary Higgs measurements to CEPC g(HHH), g(Htt)
- Heavy ion, e-p collision...

Complementary

e+ e- Linac (240m)

Proton Linac

HEP - CPS 2021

BTC

IP3

