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Overview Jet-Parton Matching 𝒕𝒕𝒕𝒕 Events 
• Primary (all-hadronic) decay channel produces six particles: two 𝑞𝑞𝑞𝑞𝑞𝑞 triplets with opposite charge.
• After these particles are produced, they are showered and measured as four-momentum jets.
• Along with the jets from each of the particles, there may be additional jets in the signal.

{𝑗𝑗1, 𝑗𝑗2, 𝑗𝑗3, 𝑗𝑗4, 𝑗𝑗5, 𝑗𝑗6, 𝑗𝑗7, 𝑗𝑗8}

{𝑞𝑞, 𝑞𝑞′,∅, 𝑞𝑞′, 𝑞𝑞′,∅, 𝑞𝑞, 𝑞𝑞}

Match Jets to Particle Labels

Garbage Jets

Unsorted List of Jets

Targets



Overview Set Assignment

This modeling task may be generalized as a set assignment problem.

𝐼𝐼 = {𝑗𝑗1, 𝑗𝑗2, … , 𝑗𝑗𝑁𝑁}
Input is a set of size 𝑵𝑵

Output is a predicted assignment set of size 𝑵𝑵
with each 𝒑𝒑 ∈ 𝑻𝑻 𝒔𝒔. 𝒕𝒕.𝒑𝒑𝒊𝒊 ≠ 𝒑𝒑𝒋𝒋 𝒐𝒐𝒐𝒐 𝒑𝒑𝒊𝒊 = ∅

{𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑁𝑁}

𝑇𝑇 = {∅, 𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝐶𝐶}
Possible Assignments are a set of size 𝑪𝑪 ≤ 𝑵𝑵 and a special null assignemnt ∅



Set Assignment Basic Approached

Itemized Approach – Simply train a classification model to predict the assignment.
• How do you prevent two identical targets being predicted? Remove after selection?
• How do you pick which order to go through the targets?
• The network has no signal on the uniqueness of targets.

Permutation Approach – Construct all possible jet permutations and rank each one.

• A good approach for incorporating symmetries and uniqueness. 
• Used in existing methods such as 𝜒𝜒2 or BDTs.

• However, we need to generate every permutation! Runtime is 𝑂𝑂 𝑁𝑁𝐶𝐶 .
• Ranking function may find it difficult to distinguish similar configurations.
• Need to handle variable length inputs in a meaningful way, how do we pick an input order?



Set Assignment A Combined Approach
The first improvement in SPANet is to merge these 

two approaches to get the best of both.

Output independent sub-permutations scores for each particle
and learn to differentiate sub-permutations with classification.  

Particle Classification Stage

Jet
Permutation 
Stage

Jet
Permutation 
Stage



Symmetry Target Symmetries
One very interesting property of Feynman Diagram matching is the presence of symmetries. 
The following target sets are equivalent due to charge symmetry.  

𝒒𝒒𝟏𝟏𝒒𝒒𝟐𝟐𝑞𝑞𝑞𝑞1′𝑞𝑞2′ 𝑞𝑞′ ↔ 𝒒𝒒𝟐𝟐𝒒𝒒𝟏𝟏𝑞𝑞𝑞𝑞1′ 𝑞𝑞2′ 𝑞𝑞′

𝑞𝑞1𝑞𝑞2𝑞𝑞𝒒𝒒𝟏𝟏′ 𝒒𝒒𝟐𝟐′ 𝑞𝑞′ ↔ 𝑞𝑞1𝑞𝑞2𝑞𝑞𝒒𝒒𝟐𝟐′ 𝒒𝒒𝟏𝟏′ 𝑞𝑞′
We call these jet symmetries – the light 
quarks can be freely rearranged. This will be 
handled with attention. 

We call this particle symmetry – the two top 
quarks cannot be differentiated from each other 
with kinematic measurements alone. This will 
be handled with a special loss function.

𝑞𝑞1𝑞𝑞2𝑞𝑞𝒒𝒒𝟏𝟏′ 𝒒𝒒𝟐𝟐′ 𝒃𝒃′ ↔ 𝒒𝒒𝟏𝟏′ 𝒒𝒒𝟐𝟐′ 𝒃𝒃′𝑞𝑞1𝑞𝑞2𝑞𝑞

𝒒𝒒𝟏𝟏𝒒𝒒𝟐𝟐𝒃𝒃𝒒𝒒𝟏𝟏′ 𝑞𝑞2′ 𝑞𝑞′ ≠ 𝒒𝒒𝟏𝟏′ 𝒒𝒒𝟐𝟐𝒃𝒃𝒒𝒒𝟏𝟏𝑞𝑞2′ 𝑞𝑞′
Note: this is not the same as allowing duplicate targets 
as the jet groupings must permute together.



Symmetry Input Permutation Equivariance
• Another important symmetry permutation invariance on the input.
• We want to ensure that our output matches the order of our input.
• This must work for any initial ordering on the input jets and for any number of jets.

𝑗𝑗1, 𝑗𝑗2, 𝑗𝑗3, 𝑗𝑗4, 𝑗𝑗5, 𝑗𝑗6, 𝑗𝑗7, 𝑗𝑗8 ≅ 𝑗𝑗3, 𝑗𝑗7, 𝑗𝑗1, 𝑗𝑗2, 𝑗𝑗8, 𝑗𝑗4, 𝑗𝑗6, 𝑗𝑗5
𝑞𝑞, 𝑞𝑞′,∅, 𝑞𝑞′, 𝑞𝑞′,∅, 𝑞𝑞, 𝑞𝑞 ≅ {∅, 𝑞𝑞, 𝑞𝑞, 𝑞𝑞′, 𝑞𝑞, 𝑞𝑞′,∅, 𝑞𝑞′}

One common approach is to enforce a consistent ordering, for example sort the jets by 𝑝𝑝𝑇𝑇.
However, we can avoid fixing an order if we just use a permutation equivariant architecture.

Transformer Attention



Attention Overview

Best understood as a 
continuous, differentiable
key-value database

Vectors

Pick a SIMILARITY function. Compute and 
normalize similarity between all query-
key pairs to make attention weights.

Output is the weighted average of all 
values weighted by similarity.

(Abusing Einstein notation a bit)



Attention Self-Attention

One Interesting case of attention is 
Self-Attention, where the queries, 
keys, and values are simply 
functions of the same set vectors.

This is leveraged to learn 
contextual, pair-wise relationships 
within a set of vectors.

Cheng, Jianpeng, et al. “Long Short-Term Memory-Networks for Machine Reading.” Sept. 2016.



Attention Transformers

1. The full transformer uses “multi-head” self-attention, but this is conceptually equivalent for our purposes.
2. Vaswani, Ashish, et al. “Attention Is All You Need.” Dec. 2017.

Self-attention1 with scaled dot-
product as the similarity measure.

The transformer encoder2 combines

• Scaled dot-product attention
• Skip-connections
• Layer Normalization
• Position-independent feed-forward layers.

Transformers are permutation 
equivariant on their input!



Tensor Attention Producing Jet Permutation Rankings
We can also use attention to produce joint distributions for over jets.
Generalization of dot-product attention: Symmetric Tensor Attention

Suppose 𝑿𝑿 is our list of vectors. This can be viewed 
as a (1,1)-tensor with ranks 𝑁𝑁,𝐷𝐷 . We want to 
create a ranking over 𝐾𝐾-groups of vectors.

Store 𝚯𝚯: a (0,𝐾𝐾)-tensor of learnable weights with 
rank 𝐷𝐷,𝐷𝐷, … ,𝐷𝐷 .

1. Perform generalized dot-product self-attention 
on 𝑿𝑿 with the mixing weights 𝚯𝚯 to produce 
attention weights 𝑶𝑶.

2. Normalize 𝑶𝑶 to create a valid joint distribution 
𝑷𝑷 over 𝐾𝐾-groups of vectors.



Tensor Attention Incorporating Group Symmetries
Suppose our vector scores obey additional symmetries. We 

encode this as a permutation group on the indices of 𝚯𝚯

Suppose 𝑮𝑮𝑷𝑷 ⊆ 𝑺𝑺𝑲𝑲 is a permutation group acting on the jet 
assignments 𝐽𝐽1, 𝐽𝐽2, … , 𝐽𝐽𝐾𝐾 associated with particle 𝑷𝑷.

1. Create an augmented symmetric weights tensor 𝑺𝑺 by 
summing over the symmetric indices of 𝜽𝜽 according to 
𝑮𝑮𝑷𝑷.

2. Perform tensor attention as before with this new 
symmetric parameter tensor 𝑺𝑺.



Tensor Attention 𝒕𝒕𝒕𝒕 Example
For full hadronic 𝑡𝑡𝑡𝑡 events, we want to score possible 𝑞𝑞𝑞𝑞𝑞𝑞

triplets (𝐾𝐾 = 3) associated with each top quark.

Suppose 𝑿𝑿 stores our jets after the transformer 
phases. We interpret these encoded jets as a (1,1)-
tensor with rank 𝑁𝑁,𝐷𝐷 .

Suppose 𝚯𝚯 is a (0,3)-tensor of learnable weights 
with rank 𝐷𝐷,𝐷𝐷,𝐷𝐷 . 𝐷𝐷 may be chosen arbitrarily, and 
we use 𝐷𝐷 = 128 in our experiments.

1. Perform generalized dot-product self-attention 
on 𝑿𝑿 with the mixing weights 𝚯𝚯 to produce 
attention weights 𝑶𝑶.

2. Normalize 𝑶𝑶 to create a valid joint distribution 
𝑷𝑷 over triplets of vectors.



Tensor Attention Symmetric 𝒕𝒕𝒕𝒕 Example
Each 𝑞𝑞1𝑞𝑞2𝑞𝑞 triplet obeys a charge symmetry on the light quarks. Such a 

permutation group may be generated by the transposition 𝑞𝑞1𝑞𝑞2

Suppose 𝑮𝑮𝒕𝒕 = 𝑞𝑞1𝑞𝑞2 ⊆ 𝑺𝑺𝟑𝟑 is a permutation group acting 
on the jet classes 𝑞𝑞1,𝑞𝑞2,𝑞𝑞 associated with particle 𝒕𝒕.

1. Create an augmented symmetric weights tensor 𝑺𝑺 by 
summing over the symmetric indices of 𝜽𝜽 according to 
𝑮𝑮𝑷𝑷. In this case, simply ensure that parameter 𝑺𝑺 is 
commutative in the first two axes. 

2. Perform tensor attention as before with this new 
symmetric parameter tensor 𝑺𝑺.



SPANet Architecture

Event-level 
context-aware 

encoding

Particle-level 
encoding

Symmetric jet 
matching

Output 
distributions 
predicting the most 
likely permutation 
of jets associated 
with each particle.

Input a set of 
4-momentum 
vectors.

Split the information 
stream into a finite 
collection of particles. 



SPANet Training the Permutation Ranker 

We output a joint distribution matrix summing to 1, representing the 
networks belief (score) that the given permutation is the correct assignment.

Each particle may be trained using regular Cross-Entropy Loss.



SPANet Combining Particle Loss with Symmetries

However, we have additional particle symmetries, which we encode as a 
particle-level symmetry group 𝐺𝐺𝐸𝐸 ⊆ 𝑺𝑺𝑚𝑚 which acts on our resonance 
particles 𝑃𝑃1,𝑃𝑃2, … ,𝑃𝑃𝑚𝑚 in a similar way to the jet symmetry groups.

To ensure that the network may jointly swap any two symmetric particles, set 
the loss to the minimum achievable loss on all possible permutations of our 
particle targets.

If we had two independent particles, we could simply sum the two 
particle losses and train both outputs simultaneously.



SPANet Training on Partial Events
By constructing such a separatable loss function, we can also better use 
existing data by training on partial events where one or more of the jets are 
unable to be reconstructed.

As long as at least one complete resonance particle is present, we can use the 
loss from that particle, along with symmetric alternatives, to still recover a 
training signal. We mark reconstructable particles with a masking tensor 𝑴𝑴

Very important for larger events, where complete events are rare! 



SPANet 𝒕𝒕𝒕𝒕 Example

Our particle symmetry group for 𝑡𝑡𝑡𝑡 is the entire 𝑆𝑆2 = (𝑡𝑡 𝑡𝑡) = 𝐺𝐺𝐸𝐸.
Our symmetric loss term becomes.

This way, our network will not be penalized for a 
correct jet assignment with an incorrect charge.



SPANet Results – ATLAS 𝑡𝑡𝑡𝑡

SPANet𝝌𝝌𝟐𝟐



SPANet Results – ATLAS Challenge Events 𝒕𝒕𝒕𝒕𝒕𝒕 & 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

𝒕𝒕𝒕𝒕𝒕𝒕
Testing different particle
types with more complex
symmetries

Testing extreme event
sizes with at least 13
jets in most events.



SPANet Results – Performance
SPANet is able the achieve these reconstruction efficiencies while being
up to 3 orders of magnitude faster than baseline methods, with
further potential to accelerate computation on GPUs.



SPANet Results – Transfer Learning e−e+ → 𝑡𝑡𝑡𝑡

Preliminary results show that knowledge may be quickly transferred between 
different detectors & processes so long as the event topology remains the same  

𝝐𝝐𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒕𝒕 𝝐𝝐𝟐𝟐
𝒕𝒕𝒐𝒐𝒑𝒑 𝝐𝝐𝟏𝟏

𝒕𝒕𝒐𝒐𝒑𝒑

Direct ATLAS Model 31.7% 36.4% 15.4%
Transfer Learning on 10K e−e+events 69.0% 71.1% 42.2%
Transfer Learning on 100K e−e+events 77.2% 78.8% 49.3%

We take the pre-trained model from before, trained on 5 Million ATLAS 𝑡𝑡𝑡𝑡 events. 
• Simply applying the ATLAS model directly works but not very efficient.
• We can significantly reduce required event count by transfer learning.
• More events allowed better results but require much fewer events than training from scratch.
• Transfer learning is very fast, only 10 minutes on a single GPU.

We thank Gang Li and Qiang Li for their feedback on CEPC Delphes to generate 𝑒𝑒−𝑒𝑒+ events.  



SPANet Library

We’ve open sources all our techniques so that you can 
start applying to your events and experiments!

https://github.com/Alexanders101/SPANet

Included is a full guide on how to run SPANets on 𝑡𝑡𝑡𝑡 events 
and a general configuration guide for any event topology. 

https://github.com/Alexanders101/SPANet/blob/master/docs/TTBar.md

https://github.com/Alexanders101/SPANet
https://github.com/Alexanders101/SPANet/blob/master/docs/TTBar.md


SPANet Event Configuration

Configure your event by specifying the event 
permutation groups mentioned before and 
the network construction will be automated 
according to the specification. 

𝑮𝑮𝑬𝑬

𝑮𝑮𝒕𝒕𝟏𝟏

𝑮𝑮𝒕𝒕𝟐𝟐

Particle Symmetry Group

Jet Symmetry Groups



SPANet Summary
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