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Overview Jet-Parton Matching tt Events

Primary (all-hadronic) decay channel produces six particles: two qgb triplets with opposite charge.
After these particles are produced, they are showered and measured as four-momentum jets.
Along with the jets from each of the particles, there may be additional jets in the signal.
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Overview Set Assignment

This modeling task may be generalized as a set assignment problem.

Input is a set of size N

I = {jl'jZJ ---;jN}

Possible Assignments are a set of size C < N and a special null assighemnt @

T —_ {@, tl' tz, ceny tc}

Output is a predicted assignment set of size N
witheachp e Ts.t.p; # pjorp; =0

{pli P2, ) pN}



Set Assignment Basic Approached

Itemized Approach - Simply train a classification model to predict the assignment.
* How do you prevent two identical targets being predicted? Remove after selection?
 How do you pick which order to go through the targets?

* The network has no signal on the unigueness of targets.

Permutation Approach - Construct all possible jet permutations and rank each one.

* A good approach for incorporating symmetries and unigueness.
* Used in existing methods such as y? or BDTs.

« However, we need to generate every permutation! Runtime is O(N©).
* Ranking function may find it difficult to distinguish similar configurations.
* Need to handle variable length inputs in a meaningful way, how do we pick an input order?



Set Assighment A Combined Approach

The first improvement in SPANet is to merge these
two approaches to get the best of both.

Output independent sub-permutations scores for each particle
and learn to differentiate sub-permutations with classification.
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Symmetry Target Symmetries

One very interesting property of Feynman Diagram matching is the presence of symmetries.
The following target sets are equivalent due to charge symmetry.

q192bq1q:b" < q,q.bgiq;b’

We call these jet symmetries — the light

<+——— quarks can be freely rearranged. This will be

CI1CI2bCI,1q’2b' < (hCIszI,zCI'lb'

T T T
q192bq1q9,b" < q1q5b'q1q,b

Note: this is not the same as allowing duplicate targets
as the jet groupings must permute together.

handled with attention.

We call this particle symmetry — the two top
quarks cannot be differentiated from each other
with kinematic measurements alone. This will
be handled with a special loss function.

q192bq1q:b" # q19,bq1q3b’



Symmetry Input Permutation Equivariance

Another important symmetry permutation invariance on the input.
We want to ensure that our output matches the order of our input.
This must work for any initial ordering on the input jets and for any number of jets.

U11j21j3;j4;j5;j6;j7;j8} = {i3:j7;j1;j2;j8;j4;j6;j5}
h,q',90,9,b",0,q9,q} ={9,9,b,9',9,9",0,b"}

One common approach is to enforce a consistent ordering, for example sort the jets by pr.
However, we can avoid fixing an order if we just use a permutation equivariant architecture.

Transformer Attention



Attention Overview Vectors

L

Best understood as a Q= {Cha q2, - - -, Qm} (QUERIES
continuous, differentiable K = {]{1, ko, ..., kn} KEYS
key-value database V= {”Uh Vg, ... 7Un} VALUES

Pick a SIMILARITY function. Compute and Sy;j = SIMILARITY((]@, kj)

normalize similarity between all query- Sij

€
key pairs to make attention weights. Wij — NORMALIZE(S@' ) — Zn S
=1 ¢

Output is the weighted average of all Oz’ _ W@j Vj

values weighted by similarity.
(Abusing Einstein notation a bit)



Attention Self-Attention

Q — fgq (X) One Interesting case of attention is
Self-Attention, where the queries,
I = fek (X) keys, and values are simply
/' = f@ (X) functions of the same set vectors.
(Y

This is leveraged to learn
contextual, pair-wise relationships
within a set of vectors.

Cheng, Jianpeng, et al. “Long Short-Term Memory-Networks for Machine Reading.” Sept. 2016.



Attention Transformers

SIMILARITY(q;, kj) =

( 1

Add & Norm

Feed
Forward

A

Add & Norm

Multi-Head
Attention

—t

y,

qi - k;

v D

Self-attention! with scaled dot-
product as the similarity measure.

The transformer encoder? combines

* Scaled dot-product attention
* Skip-connections
e Layer Normalization

* Position-independent feed-forward layers.

Transformers are permutation
equivariant on their input!

1. The full transformer uses “multi-head” self-attention, but this is conceptually equivalent for our purposes.
2. Vaswani, Ashish, et al. “Attention Is All You Need.” Dec. 2017.



Tensor Attention Producing Jet Permutation Rankings

We can also use attention to produce joint distributions for over jets.
Generalization of dot-product attention: Symmetric Tensor Attention

Suppose X is our list of vectors. This can be viewed
as a (1,1)-tensor with ranks (N, D). We want to
create a ranking over K-groups of vectors.

Store O: a (0, K)-tensor of learnable weights with o , , _
J1J2-+-JN — J1 Y J2 JN (@ 1Nn2... NN
rank (D, D, ..., D). 0, — anXng c e X”N@

1. Perform generalized dot-product self-attention
on X with the mixing weights © to produce
attention weights O.

2. Normalize O to create a valid joint distribution Z CXP O
P over K-groups of vectors.

L J1j2---JN
PI1j2--IN — exXp O




Tensor Attention Incorporating Group Symmetries

Suppose our vector scores obey additional symmetries. We
encode this as a permutation group on the indices of @

Suppose Gp € Sk is a permutation group acting on the jet
assignments {1, /-, ..., Jx } associated with particle P.

SZlZQ"LK — E 620(1)20(2)20([()

1. Create an augmented symmetric weights tensor S by

summing over the symmetric indices of 8 according to UEGP ‘ '

Gp. Odtiz-Jxk — XN xJ2  XJK Gitia-if

; o e AN
2. Perform tensor attention as before with this new ! : S
- . . exp (O]l]?---]K)
symmetric parameter tensor §. Dirj2--JK —

Z]l)]QJJJK eXp (OjljzjK>



Tensor Attention tt Example

For full hadronic tt events, we want to score possible ggb
triplets (K = 3) associated with each top quark.

Suppose X stores our jets after the transformer
phases. We interpret these encoded jets as a (1,1)-
tensor with rank (N, D).

Suppose O is a (0,3)-tensor of learnable weights OZ] k
with rank (D, D, D). D may be chosen arbitrarily, and
we use D = 128 in our experiments.

X, X Xremm

1. Perform generalized dot-product self-attention N oX OZ]]ﬂ
on X with the mixing weights ® to produce 7)2] k _ p
attention weights O. T Z O
2. Normalize O to create a valid joint distribution eXp

P over triplets of vectors.



Tensor Attention Symmetric tt Example

Each g;q,b triplet obeys a charge symmetry on the light quarks. Such a
permutation group may be generated by the transposition (q,q5)

Suppose G; = ((g19,)) € S5 is a permutation group acting
on the jet classes {q4, g5, b} associated with particle t.

Gitizis _ @itizis | @yzinis

Jijeds — Y1 Y2 Y3 Qitiots
1. Create an augmented symmetric weights tensor S by O T Xz'l X’éz X’é3 S

summing over thg symmetric indices of 8 accord.ing to o ox (031]233)

Gp. In this case, simply ensure that parameter S is 7)]1]2]3 . p

commutative in the first two axes. T Z ox (031]2]3>
2. Perform tensor attention as before with this new jl:jQ JS p

symmetric parameter tensor S.



SPANet Architecture

Split the information
stream into a finite
collection of particles.
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SPANet Training the Permutation Ranker

We output a joint distribution matrix summing to 1, representing the
networks belief (score) that the given permutation is the correct assignment.

Each particle may be trained using regular Cross-Entropy Loss.

Lp(P,T)= Z — T I2IN | PIii2IN

jla.an'“a.jN



SPANet Combining Particle Loss with Symmetries

If we had two independent particles, we could simply sum the two
particle losses and train both outputs simultaneously.

However, we have additional particle symmetries, which we encode as a
particle-level symmetry group Gg € §,,, which acts on our resonance
particles {Py, P,, ..., P, } in a similar way to the jet symmetry groups.

To ensure that the network may jointly swap any two symmetric particles, set
the loss to the minimum achievable loss on all possible permutations of our

particle targets.

L = min Zﬁp o (1) 7:7(?;))

occGp ¢



SPANet Training on Partial Events

By constructing such a separatable loss function, we can also better use
existing data by training on partial events where one or more of the jets are

unable to be reconstructed.

As long as at least one complete resonance particle is present, we can use the
loss from that particle, along with symmetric alternatives, to still recover a
training signal. We mark reconstructable particles with a masking tensor M

ceGE

LM — min ZMa(i)ﬁp(Pi;ﬁ(i))
i=1

Very important for larger events, where complete events are rare!



SPANet tt Example

Our particle symmetry group for tt is the entire S, = ((t t)) = Gg.
Our symmetric loss term becomes.

L=min{Lp (P, T;) +Lp (P, T;),Lp (P, Ts) + Lp(Pr, Tt)}

This way, our network will not be penalized for a
correct jet assignment with an incorrect charge.
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SPANet Results — ATLAS tt

Event | SPA-NET Efficiency x~ Efficiency
Nijets Fraction | Event  Top Quark | Event Top Quark
All Events =6 0.245 0.643 0.696 0.461 0.523
== 0.282 0.601 0.667 0.408 0.476
> 8 0.320 0.528 0.613 0.313 0.395
Inclusive 0.848 0.586 0.653 0.387 0.457
Complete Events =0 0.074 0.803 0.837 0.664 0.696
==7 0.105 0.667 0.754 0.457 0.556
> 8 0.145 0.521 0.662 0.281 0.429
Inclusive 0.325 0.633 0.732 0.426 0.532
25K 25K
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SPANet Results — ATLAS Challenge Events ttH & tttt

ttH

Testing different particle
types with more complex
symmetries

Lttt

Testing extreme event
sizes with at least 13
jets in most events.

Event SPA-NET Efficiency v~ Efficiency
Nijets Fraction | Event Higgs  Top Event Higgs  Top
All Events ==8 0.261 0.370 0497 0.540 | 0.056 0.193 0.092
== 0.313 0.343 0492 0514 | 0.053 0.160 0.102
> 10 0.313 0.294 0472 0473 | 0.031 0.150 0.056
Inclusive 0.972 0.330 0485 0.502 | 0.045 0.164 0.081
Complete Events == 8§ 0.042 0.532  0.657 0.663 | 0.040 0.220 0.135
== 0.070 0.422 0.601 0.596 | 0.019 0.152 0.079
> 10 0.115 0.306 0.545 0.523 | 0.004 0.126 0.073
Inclusive 0.228 0.383 0.583 0.572 | 0.016 0.153 0.087
Event SPA-NET Efficiency
Nijets Fraction | Event  Top Quark
All Events == 12 0.219 0.276 0.484
== 13 0.304 0.247 0.474
> 14 0.450 0.198 0.450
Inclusive 0.974 0.231 0.464
Complete Events == 12 0.005 0.350 0.617
== 13 0.016 0.249 0.567
> 14 0.044 0.149 0.504
Inclusive 0.066 0.191 0.529



SPANet Results — Performance

ms Per Event (log-scale)

SPANet is able the achieve these reconstruction efficiencies while being
up to 3 orders of magnitude faster than baseline methods, with
further potential to accelerate computation on GPUs.
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SPANet Results — Transfer Learning e e™ — tt

Preliminary results show that knowledge may be quickly transferred between
different detectors & processes so long as the event topology remains the same

We take the pre-trained model from before, trained on 5 Million ATLAS tt events.
* Simply applying the ATLAS model directly works but not very efficient.
 We can significantly reduce required event count by transfer learning.

* More events allowed better results but require much fewer events than training from scratch.
* Transfer learning is very fast, only 10 minutes on a single GPU.

event top top
€
I I S

Direct ATLAS Model 31.7% 36.4% 15.4%
Transfer Learning on 10K e~ e*events 69.0% 71.1% 42.2%
Transfer Learning on 100K e~ etevents 77.2% 78.8% 49.3%

We thank Gang Li and Qiang Li for their feedback on CEPC Delphes to generate e~e* events.



SPANet Library

We’ve open sources all our techniques so that you can
start applying to your events and experiments!

https://github.com/Alexanders101/SPANet

Included is a full guide on how to run SPANets on tt events
and a general configuration guide for any event topology.

https://github.com/Alexanders101/SPANet/blob/master/docs/TTBar.md



https://github.com/Alexanders101/SPANet
https://github.com/Alexanders101/SPANet/blob/master/docs/TTBar.md

SPANet Event Configuration

[ SOURCE ]

mass = log_normalize
pt = log normalize
eta = normalize

phi = normalize

btag = none

[ EVENT ]
particles = (t1, t2)
permutations = [(t1, t2)]

[t1]
jEtS = (qlJ q2, b)
permutations = [(ql, g2)]

[t2]
jEtS = (qlJ a2, b)
permutations = [(ql, g2)]

Configure your event by specifying the event
permutation groups mentioned before and
the network construction will be automated
according to the specification.

GE Particle Symmetry Group

Gy

1
Jet Symmetry Groups

Gy

2



SPANet Summary
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