ILC SRF technology development at KEK

The 2021 International Workshop on the High Energy Circular Electron Positron Collider

2021/11/9

KEK CASA Kensei Umemori

(on behalf of KEK CASA-SRF)

Kensei Umemori, 2021/Nov/9

ILC SRF technology development at KEK

- ILC
- Operation of STF-2 accelerator
- High-Q/high-G R&D
 - 2-step baking
 - Furnace baking
- LG cavity fabrication
- Summary

- ILC
- Operation of STF-2 accelerator
- High-Q/high-G R&D
 - 2-step baking
 - Furnace baking
- LG cavity fabrication
- Summary

ILC (International Linear Collider)

Center for

Applied

Superconducting Accelerator 応用超伝導加速器センター

CASA

Shin Michizono

125+125 Gev
5 Hz
0.73 ms
31.5 MV/m(+/-20%) Q ₀ = 1E10
~ 8,000 (x 1.1)
~ 900

- ILC
- Operation of STF-2 accelerator
- High-Q/high-G R&D
 - 2-step baking
 - Furnace baking
- LG cavity fabrication
- Summary

STF-2 accelerator

- ~70 m Superconducting linac (1.65 msec/5Hz)
- SC cavities : Total 14 cavities (1.3 GHz, 9-cell)
- Cryomodule : CCM (2 cavities) \geq CM1/CM2a (8+4 cavities)

RF gun

- Photocathode RF gun $(Cs_2Te_ Q.E.~1\%)$
- Laser system : 162.5 MHz \sim 1064 nm \sim 12 W
- Klystron : 3 $(5 \text{ MW} \otimes 800 \text{ kW} \otimes 10 \text{ MW})$
- Beam dump : 2 (Dump2: 37.8 kW)
- 2K He refrigerator
- Beam monitor : Position, current, beam profile
- Bending magnet : 2

History on STF-2		# of cavities					
F.Y.2014	Low power test						
F.Y.2015	High power test	1 cavity					
F.Y.2016	High power test	8 cavities					
F.Y.2018	High power + beam test	7+2 cavities					
F.Y.2020	Low power test						
F.Y.2020~2021	High power + beam test	12+2 cavities					
 Specification in application (radiation safety) Max beam energy : 500 MeV Max beam current : 3.0 µA 							

Max beam power : 1.35 kW

Kensei Umemori, 2021/Nov/9

Cavity replacement work from 2019 to 2020

CAV#9 was replaced by the N-infusion cavity, in order to improve the accelerator performance.

Kensei Umemori, 2021/Nov/9

ILC SRF technology development at KEK

Cavity Performance in VT and Cavity Content of the content of the

Kirk Yamamoto

Max. Beam Energy Operation Kirk Yamamoto

4/9 Tried to Max. beam energy operation by adjusting cavity phase, while looking at beam plofile.

avity Monitor ((CM1,CM2a)		BE	AM OFF LI	NACモード		2021	/04/09 19:41:05		ivity S	alus	mon
	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12
Pf (W):	71.30kW	61.44kW	63.93kW	30.80kW	74.01kW	2.51kW	16.72kW	63.75kW	76.05kW	60.18kW	50.07kW	62.56kW
Pf Eacc(MV/m):	34.82	31.22	33.36	24.09	35.32	6.87	17.43	32.27	35.01	32.32	31.51	33.30
Pt(W):	10.79W	7.92W	6.77W	5.15W	9.94W	366.63mW	2.46W	10.81W	7.22W	7.28W	8.21W	5.71W
Pt Eacc(MV/m):	32.31	31.38	32.94	22.21	33.64	5.83	17.81	33.74	33.91	31.54	30.19	28.33
E-Pulse(mV):	128.000	173.000	152.000	123.000	145.000	132.000	126.000	152.000	1004.000	637.000	-282.000	-92.000
E-Charge(mV):	102.000	277.000	149.000	103.000	268.000	322.000	211.000	182.000	808.000	568.000	172.000	167.000
Arc(mV):	201.000	192.000	202.000	191.000	196.000	222.000	213.000	196.000	133.000	173.000	133.000	169.000
5K: -0 Heat Load 2K: 64	.125 m³/hour	Ca	Capture Dow Capture Inpur apture Inner co CM1 L	nstream t coupler onductor pstream	1.70E-7 Pa 3.30E-7 Pa 3.53E-8 Pa 1.44E-7 Pa	KLY: Pt Ea Pt Ea Inpu	3下Pf cc sum 33 cc ave. 2 t Volt	2.27MW 3.84MV/m 7.82MV/m 2.12V	Up: Mid: Down:	1.225 mSv, 7.095 mSv, 24.468 mSv,	'h 479. 'h 979. 'h 957.	645 uSv/h 485 uSv/h 184 uSv/h
He pressure 2K: 4K: 12 He level	3.01 kPa 5.34 kPa		CM1 Inpu CM1 Inner co CM2a Dow CM2a Inpu CM2a Inner co	t coupler onductor t coupler onductor	5.35E-6 Pa 2.27E-8 Pa 2.15E-7 Pa 4.96E-6 Pa 4.82E-8 Pa	Pt Ea Pt Ea cav1	cc sum 33 cc ave. 2 cav2 cav3	3.87MV/m 7.82MV/m	Tempera 4K	Feedback ef Power ture (Pot: 4	ОFF 28.00	6

- Maximum beam energy of 385 MeV was observed after adjustment of cavity phase.
- Maximized cavity performance was difficult, because of spread of cavity performance.
- After quenches at max. field, cavity performance sometimes became unstable, probably due to heat up of somewhere.
- All of electron-gun, He refrigerator, LLRF/HLRF, cryomodule were stable.

chnology development at KEK

Max. Average Eacc Operation Center for Applied Superconducting Accelerator

2021/4/12 Max. average Eacc operation was performed for 9 cavities (3 cavities were detuned).

- Average accelerating gradient estimated from beam energy was 32.9 MV/m, and estimated from RF measurement was 33.0 MV/m. Both showed very good agreement.
- 5% margin exists against ILC specification of 31.5 MV/m.
- Sometimes quenches happed during adjustment. We had to re-start.
- Beam was stable during operation.

Kensei Umemori, 2021/Nov/9

Achievements in 2019 and 2021 Kirk Yamamoto

- Successful beam acceleration at STF-2 by 14 cavities.
- Average accelerating gradient estimated from beam energy was 32.9 MV/m, and estimated from RF measurement was 33.0 MV/m. Both showed very good agreement.
- Emittance growth observed after passing through CM1/2a is under investigation.

Parameters	Mar/2019	Apr/2021
Number of cavities incl. CCM used for operation	7 + 2	12 + 2
Beam energy	280 MeV (40 MeV @CCM)	384 MeV (40 MeV @CCM)
Beam intensity	0.28 μΑ	1.8 µA
Beam power	78 W	677 W
Total charge per pulse	56 nC	360 nC
RF power @RF Gun	2.5 MW	4.0 MW
Normalized emittance @CCM	~10 / ~10 mm mrad	1.93 / 1.44 mm mrad
Normalized emittance @CM1/2a	70~90 / 35~53 mm mrad	18.9 / 26.2 mm mrad
E from boom operate	33.1 MV/m	32.9 MV/m
L _{acc} nom beam energy	(7 cavities)	(9 cavities)
$\mathbf{E} = \mathbf{from} \mathbf{P} \mathbf{E} \mathbf{powor} (\mathbf{D})$	33.8 MV/m	33.0 MV/m
Lace nom Kr power (r _{tra})	(7 cavities)	(9 cavities)

ILC SRF technology development at KEK

- ILC
- Operation of STF-2 accelerator
- High-Q/high-G R&D
 - 2-step baking
 - Furnace baking
- LG cavity fabrication
- Summary

2-step baking

Ryo Katayama, SRF2021

Cavity TE1AES022 post cold EP + 75/120C bake was tested at other labs (while always maintaining vacuum – no disassembly!)

FNAL - Batavia, IL

- Lower branch: ~43 MV/m
- Upper branch +50 MV/m (+210mT)!

Jlab - Newport News, Virginia

Lower and Upper branch obtained

DESY – Hamburg, Germany

• Upper branch: +48MV/m confirmed

<u> KEK – Tsukuba, Japan</u>

Lower Branch: +45MV/m confirmed

2-step baking (7075C, 4h + 120C,
48h) was applied to
TESLA-type 9-cell
cavities, in order to
investigate
improvement of
cavity performance.

	VI	EP	ваке	Cooling
MT3	VT4 (Baseline)	KEK-STD (20 um)	120 °C 48 h	KEK-STD
	VT5	KEK-cold (20 um)	75 °C 2h (cell1) / 75 °C 4 h (others) + 120 °C 48 h	KEK-STD
MT5	VT1 (Baseline)	KEK-STD (20 um)	120 °C 48 h	KEK-STD
	VT2	KEK-cold (20 um)	75 °C 4 h + 120 °C 48 h	KEK-STD
	VT5	KEK-cold (10 um)	75 °C 4 h + 120 °C 48 h	KEK-STD
	VT6	KEK-cold (20 um)	70 °C 4 h + 120 °C 48 h	KEK-STD w/ additional cooling
MT6	VT5 (Baseline)	KEK-STD (30 um)	120 °C 48 h	KEK-Fast w/ additional cooling
	VT6	KEK-cold (10 um)	70 °C 4 h + 120 °C 48 h	KEK-Fast w/ additional cooling

Vacuum Level [Pa]

Fast cool-down

Fast cool-down was tried at KEK. VT pit was pumped during He transfer from the dewar.

Flux expulsion during KEK-STD cooling and the additional cooling as a function of time are shown in the following figures.

Ryo Katayama, SRF2021

Results of 2-step baking

Blue: 120C, 48h baking Others: 2-step baking

- Some improvement was observed for Q-values. But fast-cool down might be important factor.
- No improvement of Eacc was observed.
- Both of normal baking/2-step baking show good results.

- ILC
- Operation of STF-2 accelerator
- High-Q/high-G R&D
 - 2-step baking
 - Furnace baking
- LG cavity fabrication
- Summary

Comparison of Q-E curve

ര്

Cavity temperature during measurement

- 120 ~ 600°C baking ... at 2.0 K (2.00~2.01 K)
- 800°C baking ... at 2.1 K (2.07K)

- Extremely high Q value and anti-Q slope are observed
- Highest Q value at 2.0 K is ~ 5E10 for 300°C baked cavity
- Magnetic field was trapped before 2 K measurement of 350°C baked cavity -> Q value is Essentially a bit higher

Standard recipe (120°C 48 h), 200°C 3 h

- 200°C baked cavity follows the standard recipe (120°C 48h)
- Q-E behavior at low E_{acc} is slightly different

500 ~ 800°C 3 h

- High Q value wasn't observed
- HFQS occurred
- Varying the temperature of furnace baking varies Q-E behavior drastically
- In 300 ~ 400°C furnace baking, the cavity is limited at around 25 MV/m?

Changing baking time for 200C furnace baking

 Onset of HFQS for 200°C 1 h cavity was overcome by 200°C 2 h furnace baking

Havato Ito.

- ->Q exceeded 2E10 at 35 MV/m
- The effect of precooling needs to be considered
- Or is there a cavity dependence?

200C furnace baking is a good candidate for high-Q/high-G ILC cavities.

- ILC
- Operation of STF-2 accelerator
- High-Q/high-G R&D
 - 2-step baking
 - Furnace baking
- LG cavity fabrication
- Summary

Manufacture method of Large and Medium-Grain Nb discs "

* The "Nb forged ingot" technology originated by ATI, and SRF (GHz) cavities were fabricated and RF tested by KEK and JLab, to qualify this approach, in collaboration of ATI, ODU/BSCE, JLab, and KEK. 22

Results of KEK LG/MG cavities

K. Umemori, SRF2021

	R1	R5	KEK-2	R10/ R10b	KEK-4/ KEK-5	R-16/ R16b	R-17/ R-17b	R-18/ R-18b
Supplier	Tokyo Denkai	CBMM	Tokyo Denkai	CBMM	CBMM	ULVAC	ULVAC	ATI
Grain size	LG	LG	LG	LG	LG	LG	LG	MG
# of cells	Single	Single	9-cells	3-cells	9-cells	3-cells	3-cells	Single
RRR (RT/Tc)	496	107	496	242 ~ 298	242 ~ 298	500	363	494
Ta- content	Low	High	Low	High	High	Low	High	Low
Results (π-mode)	<mark>42</mark> MV/m	31 MV/m	<mark>38</mark> MV/m	<mark>38 / 42</mark> MV/m	34 / 32 MV/m	/ MV/m	/ MV/m	<mark>39</mark> / MV/m

X Study on LG/MG cavities on-going. 9-cell cavities are under fabrication.

<u>Summary</u>

- SRF technology has been developed at KEK, toward ILC.
- STF-2 accelerator was successfully operated with 2 + 12 cavities.
- Average gradient from 9-cavity operation achieved 33 MV/m.
- Study on high-Q/high-G is on-going.
- Two step baking and furnace baking have been investigated to improve cavity performance. Promising results were observed.
- LG and MG Nb materials are under study. They show promising performance from single-cell cavity results.

<u>Acknowledgement</u>

Thank you very much for your help.

- Kirk Yamamoto
- Ryo Katayama
- Hayato Ito
- Takeshi Dohmae
- Takayuki Saeki

Thank you very much for your attention.