

The 2021 International Workshop on the High Energy Circular Electron Positron Collider







# R&D Highlights of CALICE HCAL Prototypes Shu Li

**Tsung-Dao Lee Institute & School of Physics and Astronomy** 

Shanghai Jiao Tong University

On behalf of

**CALICE Collaboration** 



また道研究が Tsung-Dao Lee Institute

# **Outline**



- New developments of the CALICE SDHCAL prototype
- Recent progresses in CALICE AHCAL prototype
- News and status of CEPC AHCAL prototype





上海交通大學 李旼道研究听 Tsung-Dao Lee Institute



# **CALICE SDHCAL** (also for CEPC SDHCAL)

### **SDHCAL** in a nutshell

The SDHCAL-GRPC is one of the two HCAL options based on PFA and proposed for **ILD of ILC/CEPC**. Modules are made of 48 RPC chambers ( $6\lambda_I$ ) equipped with **semi-digital**, **power-pulsed electronics** readout and placed in **self-supporting mechanical** structure to serve as absorber as well.

The structure proposed for the SDHCAL :

- is very compact with negligible dead zones
- Eliminates projective cracks
- Minimizes barrel / endcap separation (services leaving from the outer radius)

#### SDHCAL Technological Prototype should

be as much as possible similar to the ILD module and able to study **hadronic showers** 

#### Challenges

- -Homogeneity for large surfaces
- -Thickness of only few mms
- -Lateral segmentation of 1 cm X 1 cm
- -Services from one side
- -Embedded power-cycled electronics
- -Self-supporting mechanical structure

#### TSUNG-DAO LEE INSTITUTE





#### Imad Laktineh

#### JINST 10 (2015) P10039

- ➢ 48 layers
- ▶ 1 cm X 1 cm granularity
  ≅ 3-threshold, 500000 channels
- Power-Pulsed
- Triggerless DAQ system
- Self-supporting mechanical structure

Imad Laktineh

SDHCAL prototype was exposed to beam particles at CERN PS, SPS in 2012, 2015, 2017 and 2018



# Selected results of the technological SDHCAL prototype () ジョズダ大学

 $\mathbf{E}_{\text{rec}} = \alpha (N_{\text{tot}}) N_1 + \beta (N_{\text{tot}}) N_2 + \gamma (N_{\text{tot}}) N_3$ 

 $N_1$  = Nb. of pads with first threshold <signal < second threshold  $N_2$  = Nb. of pads with second threshold <signal < third threshold  $N_3$  = Nb. of pads with signal> third threshold

$$N_{tot} = N_1 + N_2 + N_3$$





Imad Laktineh

波道研究厅

Tsung-Dao Lee Institute

#### **SDHCAL R&D** towards future colliders

Detectors as large as 3m X 1m need to be built

□ Electronic readout should be the most robust with minimal intervention during operation.

□ Mechanical structure with minimal dead zone

□ Include time information SDHCAL → T-SDHCAL



上海交通大學

NGHAI JIAO TONG UNIVERSITY



Imad Laktineh

空町

Tsung-Dao Lee Institute

# New large RPC design



Construction and operation of large GRPC necessitate some improvements with respect to the present scenario.

- ➤ Gas distribution: new scheme is adopted
- ➤ Gas gap thickness: better control
- ➢ Coating: new paints are tested







#### **New readout electronics**





Larger PCB (100 cm X 33 cm)
 Detector InterFace (DIF) to read out up to 432 ASICs



786 HR3 produced and tested, Yield: 83.3 % TSUNG-DAO LEE INSTITUTE 以天之语 解物之道 13 ASUs & 5 DIF produced and being tested

300



#### New mechanical structure design



Imad Laktineh 李政道研究厅 Tsung-Dao Lee Institute





以大乙语 解彻乙退







Timing is an important factor to identify delayed neutrons and better reconstruct their energy Distance from shower axis (W/o neutrons)



**Timing** can help to separate closeby showers and reduce the confusion for a better **PFA** application. Example: pi-(20 GeV), K-(10 GeV) separated by 15 cm.





# **T-SDHCAL**

#### How to achieve an excellent time resolution:

An **ASIC** with a fast preamplifier, precise discriminator and excellent TDC is needed

→PETIROC 32-channel, high bandwidth preamp (GBWP> 10 GHz), <3 mW/ch, dual time and charge measurement (Q>50 fC) jitter < 20 ps rms @ Q>0.3 pC

- → TDC either internal or external (delay-line, Vernier, etc on FPGA as for iRPC CMS upgrade project)
- A fast-time **DETECTOR**
- → MultiGAP RPC is an excellent candidate.
- 4-5 gaps of 250  $\mu m$  each can provide 100 ps tim resolution









#### **First step towards transforming SDHCAL into T-SDHCAL**





- Front-End Electronics for MRPC readout with high timing resolution
- The system includes a front-end board (FEB), a detector interface card (DIF) and a data acquisition system(DAQ) based on ZCU102.



Test System and Setup



#### TSUNG-DAO LEE INSTITUTE

#### **SDHCAL: Conclusions and perspectives**



- □ SDHCAL was the first technological of the CALICE high granular calorimeter prototypes
- □ Results of beam tests validate the concept. Many results are obtained.
- □ New prototype with large detectors and improved services is on the rails and in principle could be achieved as soon as funding becomes available.
- □ New features such as timing will play important role in future R&D for future colliders. SDHCAL with its (M)RPC is an excellent tool to achieve that.







# **CALICE AHCAL**



# AHCAL Technological Testbeam Prototype

#### Large enough to contain hadron showers

- 38 active layers of 72\*72 cm<sup>2</sup>
- 4 HBUs per module
- in total: 608 SPIROC2E ASICs, ~22000 channels
- SiPMs: Hamamatsu S13360-1325PE

#### All modules interchangeable

Built with scalable production techniques in ~2 years

# Operated in beam tests with muons, electrons and pions at CERN SPS in 2018

- 3 weeks of beam time
- Collected O(100) mio events
- Very stable running
- Nearly noise free
- < 1 per mille dead channels







![](_page_17_Picture_17.jpeg)

# AHCAL Technological Prototype at SPS Testbeam

![](_page_18_Picture_1.jpeg)

Katja Krüger 大波道研究听 Tsung-Dao Lee Institute

![](_page_18_Picture_3.jpeg)

![](_page_18_Figure_4.jpeg)

![](_page_18_Figure_5.jpeg)

![](_page_18_Picture_6.jpeg)

**TSUNG-DAO LEE INSTITUTE** 

# **AHCAL Plans: Testbeam Measurements**

Fully exploit timing capabilities

- Perform full set of testbeam measurements in ILC mode
- Develop reconstruction algorithms to better use hit time information

#### Tungsten Stack

- Data taken so far with steel absorber stack
- Tungsten would offer shorter showers
- Valuable input for hadronic shower models (ECAL)
- Plan to re-use tungsten absorber stack already used for physics protype

Running with ECAL

- Performance of a calorimeter system depends on combination of ECAL and HCAL
- Plan to take data together with CALICE silicon-tungsten and/or scintillatortungsten ECAL

![](_page_19_Picture_12.jpeg)

![](_page_19_Picture_13.jpeg)

![](_page_19_Figure_14.jpeg)

![](_page_19_Picture_15.jpeg)

### **AHCAL Plans: Hardware Developments**

Katja Krüger 上海交通大学 Shanghai Jiao Tong University Katja Krüger 子は道研究所 Tsung-Dao Lee Institute

Alternative scintillator geometry

- Megatiles would allow larger units for mechanical assembly
- Status: Ongoing effort, optimization of uniformity and cross talk

Alternative Readout ASIC (KLauS)

- Wide range of applications
- Possible application at circular Higgs factories
- Optimised for SiPMs with small pixels (10µm) -> possible application in ECAL
- Status: KLauS6 with full functionality available, ongoing effort to integrate into AHCAL DAQ

**Common Readout** 

- Harmonize readout between CALICE SiW ECAL and AHCAL
- Status: just started

TSUNG-DAO LEE INSTITUTE

![](_page_20_Picture_15.jpeg)

![](_page_20_Picture_16.jpeg)

![](_page_20_Picture_17.jpeg)

# SiPM-on-Tile in CMS HGCAL

Katja Krüger 上海交通大学 Shanghai Jiao Tong UNIVERSITY Katja Krüger 大设道研究近 Tsung-Dao Lee Institute

![](_page_21_Picture_2.jpeg)

- CMS calorimeter endcap will be replaced for HL-LHC by High-Granularity calorimeter
- synergy with high granularity calorimeter concepts developed for electron-positron colliders
  - Use SiPM-on-tile wherever radiation levels allow

![](_page_21_Figure_6.jpeg)

# SiPM-on-Tile Technology for HGCAL

- New challenges:
  - radiation levels
  - data rates
  - operation at -30 degrees
  - Many different tile and board sizes
- Adaptation of AHCAL technologies to HGCAL
  - Readout with fast and rad-hard components
  - Careful design for large temperature variations (from assembly to operation)
  - More flexible and robust assembly procedures
    - Tile wrapping
    - Tile glueing

![](_page_22_Picture_12.jpeg)

![](_page_22_Picture_13.jpeg)

![](_page_22_Picture_14.jpeg)

#### TSUNG-DAO LEE INSTITUTE

![](_page_23_Picture_0.jpeg)

![](_page_23_Picture_1.jpeg)

# **CEPC AHCAL**

#### **CEPC Physics goal and PFA**

![](_page_24_Picture_1.jpeg)

- CEPC Physical Goal
  - Precise measurement of the Higgs particle' s properties
  - Explores new physics beyond standard model
  - Precise measurement of the electroweak interaction parameters related to W and Z
- Requirements of CEPC calorimeter:
  - high granularity Energy resolution reach 30%/  $\sqrt{E}$  at jet energy below 100GeV
  - HCal: 60%/ √ E(GeV) ⊕ 4%

| Particles in jets | Fraction of energy  | Measured with           | Resolution [ $\sigma^2$ ]            |                 |
|-------------------|---------------------|-------------------------|--------------------------------------|-----------------|
| Charged           | 65 %                | Tracker                 | Negligible                           |                 |
| Photons           | 25 %                | ECAL with 15%/√E        | 0.07 <sup>2</sup> E <sub>jet</sub>   | <b>≻</b> 18%/√E |
| Neutral Hadrons   | 10 %                | ECAL + HCAL with 50%/√E | 0.16 <sup>2</sup> E <sub>jet</sub>   | J               |
| Confusion         | Required for 30%/√E |                         | ≤ 0.24 <sup>2</sup> E <sub>jet</sub> |                 |

![](_page_24_Picture_10.jpeg)

# **CEPC AHCAL prototype**

![](_page_25_Picture_1.jpeg)

- The AHCAL task: based on PFA, 60%/  $\sqrt{E(GeV)} \oplus 4\%$ 
  - Designing, building and testing a full AHCAL prototype.
- CEPC AHCAL: SiPM-on-Tile configuration
  - Prototype: 72cm×72cm×100cm with 40 layers
  - PCB: 2mm, with SiPMs, temperature sensors and SPIROC2E based readout system
  - Detector cell size: 40mm×40mm×3mm
  - Detector cell: scintillator made of polystyrene and wrapped in enhanced specular reflector (ESR) films.
  - Active layer: SiPMs + scintillators, 12,960 channel in total Absorber: steel (20mm Fe)

![](_page_25_Picture_10.jpeg)

Single layer and detector part

![](_page_25_Figure_12.jpeg)

Detector cell of 40mm ×40mm ×3mm

![](_page_25_Picture_14.jpeg)

![](_page_26_Picture_1.jpeg)

Participating institutes: USTC+IHEP+SJTU.

#### **Overall Progress:**

- PFA-based detector simulation tool and completed the design optimization of the AHCAL prototype. (Result from Yukun Shi.) (Finished)
- Boson Mass Resolution: 4%.
- The performance for the AHCAL prototype:
  - Linearity: ±1.5%
  - Resolution:  $\sqrt{48\%} E(GeV) \otimes 3\%$
- Injection molding process to produce scintillator tiles. (Finished)
- Scintillator tiles batch testing system. (Finished, more than 14k scintillators qualified)
- SiPMs batch testing system (NDL finished, HAMAMATSU in progress.)
- HBU and DAQ system (in progress.)
- Design of the mechanical structure and cooling (in progress)

![](_page_26_Picture_14.jpeg)

# **Studies on AHCAL sensitive cells**

![](_page_27_Picture_1.jpeg)

#### AHCAL sensitive cells progress: (Result from Jiechen Jiang)

- Structure of AHCAL tiles: 4cm × 4cm × 40 layers geometry
- Material of Scintillator: GNKD PS Tiles (injection molding scintillator)
- SiPMs: 35 layer + 5 layer backup HAMAMATSU (S14160-1315PS) + 5 layer NDL (22-1313-15-S)
- 40 sensitive layers, total readout channels: 12,960 (4cm×4cm), 5 backup layers.
- Uniformity testing of AHCAL scintillator tiles: light yield winthin 10%
- deviation Expected the light yield of the scintillator is greater than 40p.e.
- Expected light yield uniformity around ±10%.

![](_page_27_Figure_10.jpeg)

#### Scintillator tiles batch testing system

![](_page_28_Picture_1.jpeg)

#### JINST15 C10006 (2020)

- 3 batch test system in total, USTC + SJTU + IHEP.
- Sr90 (2.28 MeV electron)
- 4 SPIROC2E+ 144 SiPMs (S13360-1325PEs)+FPGA in DIF
- Calibration and light yield measured by batch test system:

$$LY = \frac{ADC_{MIP} - ADC_{baseline}}{Gain_{SinglePhoton}} (perMIP)$$

![](_page_28_Picture_8.jpeg)

![](_page_28_Picture_9.jpeg)

**TSUNG-DAO LEE INSTITUTE** 

#### **Batch test result - light yield**

![](_page_29_Picture_1.jpeg)

![](_page_29_Figure_2.jpeg)

![](_page_29_Picture_3.jpeg)

**TSUNG-DAO LEE INSTITUTE** 

### **SiPM Batch Test**

SiPM Batch Test: (Result from Yukun Shi)

- 16 channels, SKIROC + discrete-circuit readout.
- One LED for 4 SiPMs calibration.
- Determine working voltage:
  - Single photon separation with LED
  - Operating at best SNR
- DCR and gain control
  - SiPM with too high DCR should be abandoned
  - Uniformity of SiPMs' gain should be controlled
- NDL SiPMs test finished, HAMAMATSU SiPMs in progress.

![](_page_30_Picture_11.jpeg)

![](_page_30_Figure_12.jpeg)

NDL SiPM test: (Result from Yukun Shi)

- Different working voltage has been scanned
- Linear fit is used for the V-gain plots
- V break down is defined as the x intercept

![](_page_30_Figure_17.jpeg)

GHAI JIAO TONG UNIVERSITY

**CEPC-CALO-Group** 

Tsung-Dao Lee Institute

NDL SiPM test: (Result from Yukun Shi)

- The SNR is defined as  $peak/\sigma$
- The V operation is the working voltage with best SNR
- The Vop is generally 1.5V larger than Vbr

![](_page_30_Figure_22.jpeg)

**TSUNG-DAO LEE INSTITUTE** 

以天之语 解物之道 In progress...

# **AHCAL readout electronics and DAQ**

![](_page_31_Picture_1.jpeg)

Result from Zhongtao Shen

- ASIC design: 9 SPIROC2E HBU design: 18×18 = 324 readout channel per layer
  - The function of signal readout, electronics calibration, light calibration and temperature monitor.
- DAQ system development: FELIX card+DAQ board+DIF (Data Interface) boards+HBU

![](_page_31_Picture_6.jpeg)

![](_page_31_Picture_7.jpeg)

![](_page_31_Picture_8.jpeg)

## HBU consumption and cooling simulation

![](_page_32_Picture_1.jpeg)

![](_page_32_Figure_2.jpeg)

The power consumption of the current version of HBU is about 10W.

**TSUNG-DAO LEE INSTITUTE** 

![](_page_32_Picture_6.jpeg)

### **CEPC AHCAL** mechanical structure

![](_page_33_Picture_1.jpeg)

![](_page_33_Figure_2.jpeg)

![](_page_33_Picture_3.jpeg)

TSUNG-DAO LEE INSTITUTE

![](_page_34_Picture_1.jpeg)

Sensitive cells and Detector:

- Scintillator tile: GNKD PS Tile, batch testing finish, 91.6% pieces are quanlified within 10% of LY window.
- SiPM: 35+5 layer HMAMMATSU (S14160-1315PS) batch testing in progress, 5 layer NDL (22-1313-15-S) batch testing finished.
- Design, assembling and production of sensitive layers in progress.

Electronics:

- Developed HBU.
- Production of HBU and DAQ boards in progress.

Mechanical part:

- Design of absorb layers and supporting structure.
- Design of cooling system based on simulation result.

AHCAL Prototype status

- The prototype construction will start from the end of this year.
- The cosmic and beam test is expected next year.

![](_page_34_Picture_17.jpeg)

#### **Backup**

![](_page_35_Picture_1.jpeg)

![](_page_35_Picture_4.jpeg)

### AHCAL Technological Prototype: Ongoing Analyses

![](_page_36_Picture_1.jpeg)

- High granularity offers detailed look into hadron showers
- Used in particle ID based on Boosted Decision Trees
- Studies of shower shapes
- Application of the PandoraPFA Particle Flow Algorithm

![](_page_36_Picture_6.jpeg)

Magenta: Charged Hadron Cyan: Neutral Hadron Grey: Unclustered Hits

![](_page_36_Figure_8.jpeg)

![](_page_36_Picture_9.jpeg)

![](_page_36_Figure_10.jpeg)

# **AHCAL Prototype: Hit Time Measurement**

New feature in AHCAL technological prototype: time measurement for individual hits

- Design resolution: ~1 ns
- SPIROC2E readout ASIC supports 2 bunch clock speeds
  - Testbeam mode: 250 kHz clock
    - More efficient for data taking in testbeams
    - Worse hit time resolution: ~2ns
  - ILC mode: 5 MHz
    - Adapted to ILC bunch structure
    - Better hit time resolution: ~0.8 ns
- Full exploitation in data analysis just started
- Most testbeam data so far taken in testbeam mode

![](_page_37_Picture_12.jpeg)

![](_page_37_Figure_13.jpeg)

![](_page_37_Figure_14.jpeg)

#### **CEPC AHCAL HBU Electronics Test**

![](_page_38_Picture_1.jpeg)

The pedestal and charge calibration results mean that the chips are working normally.

![](_page_38_Figure_3.jpeg)