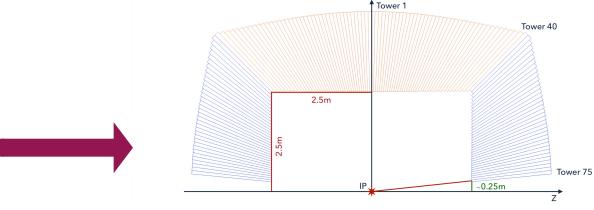


# Dual-readout fibre prototypes: status and perspective

Gabriella Gaudio
on behalf of the IDEA Dual-Readout Calorimeter Collaboration
November, 8th 2021


The 2021 International Workshop on the High Energy Circular Electron Positron Collider

### RD52 prototypes (2012)

# **Dual-Readout Calorimetry**







IDEA DR calorimeter

- Successfully pioneered SiPM readout to replace PMT
  - → High granularity
- Studying scalable solution for
  - Mechanical construction
  - Sensors and RO system
- Full scale prototypes → Assess performance

08.11.2021

# **R&D** ingredients



- Absorber
- Fibres
- Light sensor
- Readout system
- Integration

A few options are under study for each of these elements: optimize scalability in term of personpower/time and costs

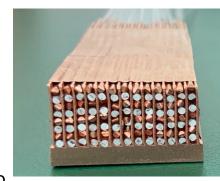
# Mechanical construction aspects: status




### Absorber material

- Copper
- Brass
- Stainless-steel
- Absorber structure
  - Plates
  - Capillary Tubes
  - Lego Assembly
  - 3D Printing




refurbishing Cu plates



capillary tube module (Brass / Stainless Steel)



Cu 3D printing



Cu Lego

# **Capillary Module**

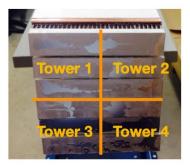


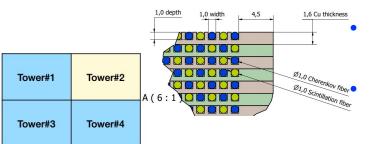
Qualified on TB (see L. Pezzotti's talk)



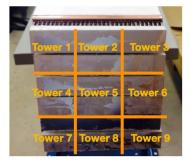
100x100mm<sup>2</sup>, 1 m long

- Hi-quality commercially available capillary tubes
- Quite easy and fast assembly system
- EM-size prototype
  - test the viability of this mechanical solution
  - scale up from 64 (previous test) to 320 SiPM readout
- Market survey for same-quality but cheaper capillary tube





2μ RMS on OD 5μ RMS on ID very clean cut cost ~I€/m (under finalization)

# Refurbishing Cu Plates




### Module #1 (2x2)





# Module #2 (3x3)

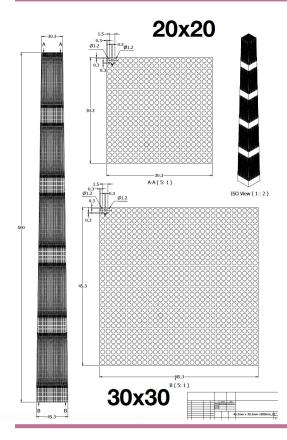


| Tower#2 | Tower#3 |
|---------|---------|
| Tower#5 | Tower#6 |
| Tower#8 | Tower#9 |
|         | Tower#5 |

92x92mm<sup>2</sup>, 2.5 m long

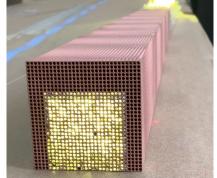
Two modules has been prepared meant for Test Beam 2021 at SPS (postponed to 2022)

### Reusing two RD52 Cu module


- disassemble, recuperate Cu plates
- new fibres

### R&D Goal

- Different light sensors under study (MPT, MCP-PMT and SiPM)
- Study of various type of optical fibers (scintillation)
- Time resolution (100 ps processing)


# Cu 3D printing





- Exploiting 3D printing technique to obtain desired shape
  - 5 tiles 30.3 x 30.3 mm<sup>2</sup> (front), 45.3x45.4 mm<sup>2</sup> (back), 100 mm long
- Ist projective module
- Easy alignment of the tiles and fiber insertion
- Ultra-high cost





# Cu Lego Module



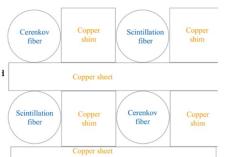



Figure 27: Direct stacking of copper shims and fibers. The shims bear the load.

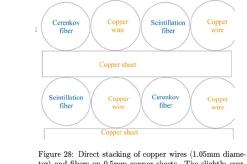
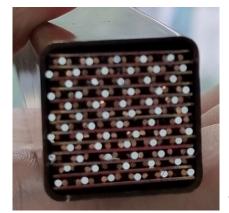
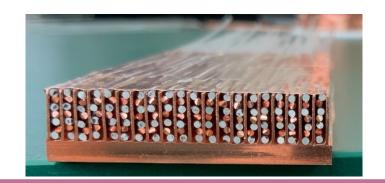




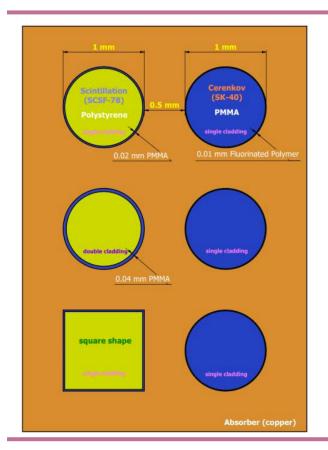

Figure 28: Direct stacking of copper wires (1.05mm diameter) and fibers on 0.5mm copper sheets. The slightly oversized copper wires carry the load.

- Ingredients: housing, copper wall, copper plate
- Use ingredients available in a market as much as possible
  - housing (copper pipes)
  - structure/wall: copper wire or plates, skiving fin heatsink



45x45 mm<sup>2</sup>, 50 cm long




# **R&D** ingredients



- ✓ Absorber
  - Fibres
- Light sensor
- Readout system
- Integration

# Scintillanting and Cherenkov Fibres



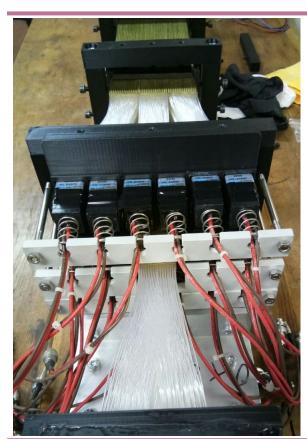


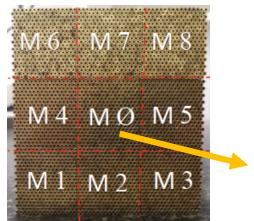
### Scintillanting Fibres:

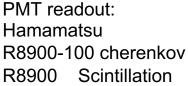
- polystyrene-based core and a PMMA cladding.
- Kuraray SCSF-78 (single and double cladding)
- Saint-Gobain BCF-10 double cladding + other option under evaluation

### Cherenkov Fibres:

- PMMA core + Fluorinated Polymer cladding
- Mitsubishi, SK-40
- Saint-Gobain Wavelength shifters


# **R&D** ingredients





- ✓ Absorber
- **√** Fibres
- Light sensor
- Readout system
- Integration

# EM-Size capillary module

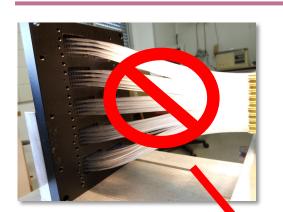











SiPM readout:

Hamamatsu SiPM: S14160-1315 PS

Cell size: 15 µm

# Sensors for next capillary tube prototype





Packaging for S14160-1315 not compatible with tube pitch

Pair of FEE-boards joint together with clips FEE-board + SiPMs Segmentation optimised to exploit grouping

PMT readout: Hamamatsu R8900 discontinued

Cherenkov light

collection

R11265-200 (UBA) R11265-203 (UBA, UV glass)



development with hamamatsu module MPPC 8ch, active area 1mm diam. wire bonding without connectors

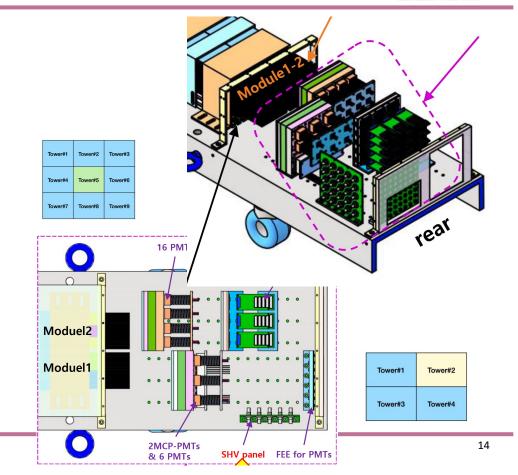
# Plate-based calo sensors: SiPM, PMT, MCP-PMT (INFN)



### MCP-PMT: excellent timing performance

| MCP-PMT             | Window<br>size | Light<br>/ pour size     | Q.E.<br>(Bialkali) | max.<br>HV<br>(V) | Rise time<br>(ns) | photo |
|---------------------|----------------|--------------------------|--------------------|-------------------|-------------------|-------|
| PLANACON<br>XP85012 | 53x53          | scintillation<br>/ 25 um | ~7%<br>at 550 nm   | 2400              | 0.6               |       |
| PLANACON<br>XP85112 | mm²            | Cerenkov<br>/ 10 um      | ~21%<br>at 400 nm  | 2800              | 0.5               |       |

https://www.photonis.com/products/planacon


### PMT: window size and timing performance

| PMT        | Window<br>size           | Q.E.<br>(Super bialkali, SBA) |                  | max. HV<br>(V) | rise time<br>(ns) | photo     |
|------------|--------------------------|-------------------------------|------------------|----------------|-------------------|-----------|
| Size       |                          | Ck.                           | Sc.              | (V)            | (115)             |           |
| R11265-100 | 23x23<br>mm <sup>2</sup> | ~35%<br>at 400 nm             | ~7%<br>at 550 nm | 1000           | 1.3               |           |
|            |                          |                               |                  | https://w      | ww.hamam          | natsu.com |

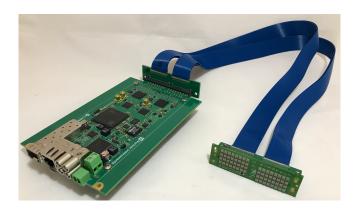
### The biggest number of pixels (16675) have been chosen

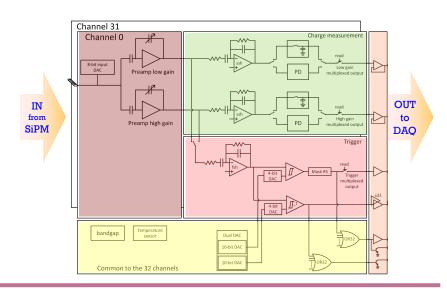
to avoid the saturation effect of photon counting for the scintillation lights.

| SiPM              | Photo-<br>sensitive<br>area | pixel<br>size | Photo detection eff.<br>(Silicone resin) |                   | number<br>of<br>pixels | photo |
|-------------------|-----------------------------|---------------|------------------------------------------|-------------------|------------------------|-------|
| S14160-<br>1310PS | 1.3x1.3<br>(1.69 mm²)       | 10 μm         | ~15%<br>at 400 nm                        | ~17%<br>at 550 nm | 16675                  |       |



# **R&D** ingredients





- ✓ Absorber
- **√** Fibres
- √ Light sensor
  - Readout system
  - Integration

### Citiroc1A based readout



- Two CitiroclA for reading out up to 64 SiPMs
- One (20 85V) HV power supply with temperature compensation
- Two 12-bit ADCs to measure the charge in all channels
- Timing measured with 64 TDCs implemented on FPGA (LSB = 500 ps)
- 2 High resolution TDCs (LSB = 50 ps)
- Optical link interface for readout (6.25 Gbit/s)





# DRS based readout



### DRS4

### Specification of DRS4 chip

NIM A 623 (2010) 86, Stefan Ritt et al.

- DRS (Domino Ring Sampler) based on SCA (Switched Capacitor Arrays)
- Number of channel (input + trigger): 8 + 1 ch
- Sampling frequency: 1~5 GS/S (1 ns ~ 200 ps/sampling depth)
- Number of sampling depth: 10 bits
- Power consumption: max. ~40 mW/ch

max. 19.2 W for 60 DRS chips (480 ch)

### Preamp board based on DRS4



NIM A830 (2016) 119 H. Kim et al.

# Average FWHM with DRS4 & SiPMs 90 80 80 70 70 40 40 30 100 150 200 250 300 350 400 450 500 Threshold (ADC count)

### **Operation Mode**

| Trigger mode                  | Data Type                                                                          | Data Size                               | Control Bus       | Expected Trigger Rate (kHz) |
|-------------------------------|------------------------------------------------------------------------------------|-----------------------------------------|-------------------|-----------------------------|
| Waveform<br>& Bin event modes | Waveform data during gate open and ADC peak and its time values over the threshold | 16 bits per channel<br>(64 kBytes/32ch) | USB3<br>(~1 GBps) | ~0.1 kHz                    |
| Fast DAQ<br>& Bin event modes | ADC peak and its time values over the threshold                                    | 8 bits per channel<br>(256 Bytes/32ch)  | USB3<br>(~1 GBps) | ~25 kHz                     |
| Bin event mode                | Pedestal data during periods in between beam spills (pe                            | destal trigger mode (                   | every 1 ms) wit   | th external beam trigger)   |

### AARDVARC based readout



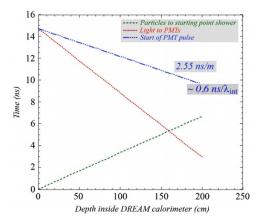
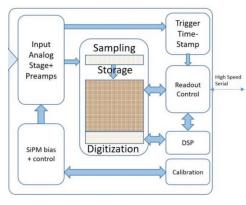




Fig. 8. Dependence of the starting time of the PMT signals on the average depth (z) inside the calorimeter where the light is produced (the dash-dotted line). This time is measured with respect to the moment the particles entered the calorimeter. Also shown are the time it takes the particles to travel to z (the dashed line) and the time it takes the light to travel from z to the PMT (the dotted line).

Timing information is a key element for PID in a longitudinally unsegmented fiber calorimeter



| Parameter       | Spec        |
|-----------------|-------------|
| Sampling Rate   | 1-2 GSa/s   |
| ABW             | > 600MHz    |
| Depth           | 2k Sa       |
| Trigger Buffer  | ~3 us*      |
| Deadtime        | 0**         |
| Channels        | 64          |
| Supply/Range    | 2.5         |
| ADC bits        | 12          |
| Timing accuracy | 80-120ps    |
| Technology      | 250 nm CMOS |
| Power           | TBD         |

HDSCoC Produced by Nalu Scientific

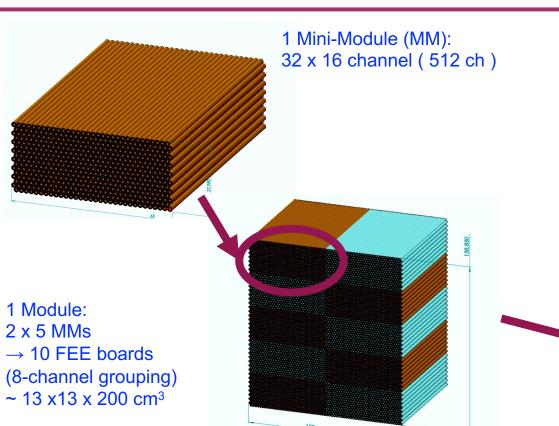
System on Chip with a built in SiPM biasing

- On chip calibration
- Serial interface
- On chip feature extraction
- Virtually dead-timeless
- 32 ch proto chip fabricated
- Phase II SBIR awaiting award
- Next steps: packaging and eval

# **R&D** ingredients

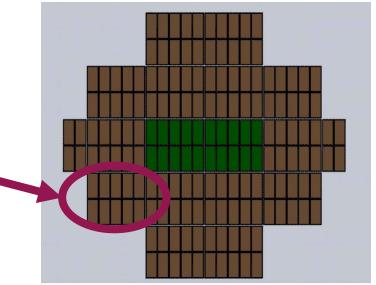


- ✓ Absorber
- **√** Fibres
- √ Light sensor
- √ Readout system
- Integration


# HiDRa module



- High-Resolution Highly Granular Dual-Readout Demonstrator
- Financed by INFN CSNV Grant: 2022 2024 (three years)
- Total request: ~ 900 k€ (dominated by material and sensors)
- Organization:
  - P.I.: Roberto Ferrari (PV)
  - WP I: Mechanics and fibre characterisation (MI, PI, PV)
  - WP 2: Light sensors (analog and digital SiPMs) (BO, CT, MI, TIFPA)
  - WP 3: FEE and DAQ development (BO, CT, MI, PV, TIFPA)
  - WP 4: Performance assessment (MI, PV, RMI)

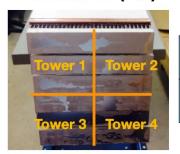

# HiDRa2





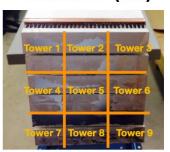
17 modules, ~ 65 x 65 x 200 cm<sup>3</sup>

- 2 central modules with SiPMs
   → ~ 10 k SiPMs, ~ 20 FEE boards
- all others with PMTs
  - → ~ 150 PMTs



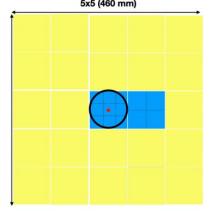

# Plate-based (+3D printing) calo (Korea)




### "Short-term plan"

### Module #1 (2x2)




| Tower#1 | Tower#2 |
|---------|---------|
| Tower#3 | Tower#4 |

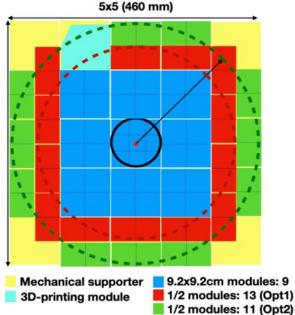
### Module #2 (3x3)



| Tower#1 | Tower#2 | Tower#3 |
|---------|---------|---------|
| Tower#4 | Tower#5 | Tower#6 |
| Tower#7 | Tower#8 | Tower#9 |

# Prototype Detector (2021) 5x5 (460 mm)






Building more and more modules 2022-2025

### "Mid-term plan"

### Prototype Detector (2025)





# Outlook



- Complementary R&D programs are ongoing in Europe, Korea and US
- Optimization on choice of detector construction, sensors, RO chip and DAQ schema
- Two full containment modules, based on different technique are funded by Korea and INFN
  - scalable technique for construction and RO
  - final assessment of EM and Hadronic performance



# **Additional Material**

# **Scintillanting Fibres**



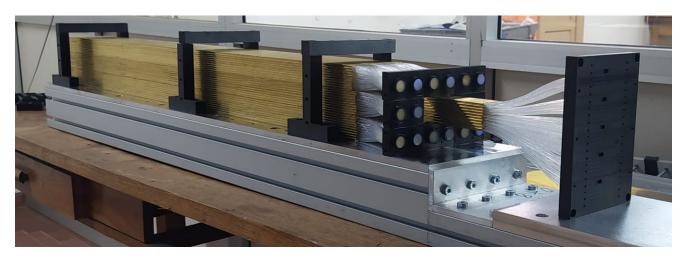
| Specific Pro | operties of St    | andard Form          | ulations          |                           |                                                       |
|--------------|-------------------|----------------------|-------------------|---------------------------|-------------------------------------------------------|
| Fiber        | Emission<br>Color | Emission<br>Peak, nm | Decay<br>Time, ns | # of Photons<br>per MeV** | Characteristics / Applications                        |
| BCF-10       | blue              | 432                  | 2.7               | ~8000                     | General purpose; optimized for diameters >250 $\mu m$ |
| BCF-12       | blue              | 435                  | 3.2               | ~8000                     | Improved transmission for use in long lengths         |
| BCF-20       | green             | 492                  | 2.7               | ~8000                     | Fast green scintillator                               |
| BCF-60       | green             | 530                  | 7                 | ~7100                     | 3HF formulation for increased hardness                |
| BCF-91A      | green             | 494                  | 12                | n/a                       | Shifts blue to green                                  |
| BCF-92       | green             | 492                  | 2.7               | n/a                       | Fast blue to green shifter                            |
| BCF-98       | n/a               | n/a                  | n/a               | n/a                       | Clear waveguide                                       |
| ** For Minir | num lonizing      | Particle (MIP),      | corrected fo      | r PMT sensitivity         |                                                       |

|                 |       | Luminescence          |     | Alexandrian Dark | Attenuation | Characteristics                                 |  |
|-----------------|-------|-----------------------|-----|------------------|-------------|-------------------------------------------------|--|
|                 |       |                       |     |                  |             |                                                 |  |
| SCSF-78         | Blue  | Refer to<br>catalogue | 450 | 2.8              | >4.0        | High luminescence<br>High attenuation<br>length |  |
| SCSF-81         | Blue  |                       | 437 | 2.4              | >3.5        | High attenuation length                         |  |
| SCSF-3HF (1500) | Green |                       | 530 | 7                | >4.5        | Radiation resistance                            |  |

# PMT / MCP\_PMT



| Description                                      |                                                                                            |
|--------------------------------------------------|--------------------------------------------------------------------------------------------|
| Window options Photocathode Multiplier structure | Schott 8337B or equivalent, UVFS (-Q) Bialkali MCP chevron (2), 25 μm pore, 40:1 L:D ratio |
| Anode structure                                  | 8×8 array, 5.9 / 6.5 mm (size / pitch)                                                     |
| Active area                                      | 53×53 mm                                                                                   |
| Package open-area-ratio                          | 80%                                                                                        |


| Photocathode characteristics                                                       | Min       | Тур                   | Max  | Unit                         |
|------------------------------------------------------------------------------------|-----------|-----------------------|------|------------------------------|
| Spectral range: Maximum sensitivity at                                             | 200       | 380                   | 650  | nm<br>nm                     |
| Sensitivity:     Luminous *     Blue *     Radiant, at peak     Quantum Efficiency | 50<br>7.5 | 60<br>8.5<br>70<br>22 |      | μΑ/lm<br>μΑ/lmF<br>mA/W<br>% |
| Characteristics                                                                    | Min       | Тур                   | Max  | Unit                         |
| Overall Voltage for 10 <sup>5</sup> Gain *                                         |           | 1800                  | 2400 | V                            |
| Total anode dark current @ 10 <sup>5</sup> gain *                                  |           | 2                     | 10   | nA                           |
| Rise time                                                                          |           | 0.6                   |      | ns                           |
| Pulse width                                                                        |           | 1.8                   |      | ns                           |

### **Recommended Voltage Divider (not included)**

|             |               |            | ® © Maximum ratings           |            |          | Cathode characteristics |                                               |                         |      |                                           |                                      |        |         |
|-------------|---------------|------------|-------------------------------|------------|----------|-------------------------|-----------------------------------------------|-------------------------|------|-------------------------------------------|--------------------------------------|--------|---------|
| Type No.    | Range<br>(nm) | wavelength | Photo-<br>cathode<br>material | IIIalellai | / stages | between                 | Average<br>anode<br>output<br>current<br>(mA) | Lumi<br>Min.<br>(µA/lm) | Тур. | sensitivity<br>index<br>(CS 5-58)<br>Typ. | Red/white<br>ratio<br>(R-68)<br>Typ. | Ountum | Radiant |
| R11265U-100 | 300 to 650    | 400        | SBA                           | K          | MC/12    | 1000                    | 0.1                                           | 90                      | 105  | 13.5                                      | _                                    | 35     | 110     |
| R11265U-200 | 300 to 650    | 400        | UBA                           | K          | MC/12    | 1000                    | 0.1                                           | 110                     | 135  | 15.5                                      | _                                    | 43     | 130     |

# Capillary-tube based Prototype

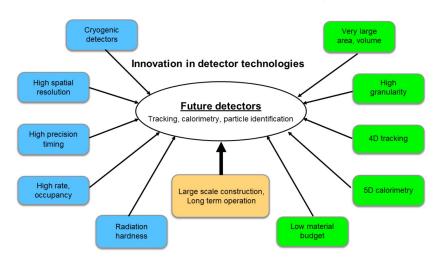




10x10 cm<sup>2</sup> divided in 9 towers, 1m long 16x20 capillary each (160 C + 160 S)

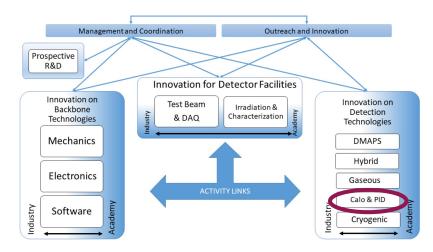
### Capillary:

2mm outer diameter, Imm inner diameter Material: brass CuZn37


### Readout:

- I central tower read out by SiPMs
- 8 surrounding towers read out by PMTs (à la RD\_52)

# AIDA innova








Start: April 1st, 2021 Duration: 4 years Full costs budget AIDAinnova = ~ 30 M€

### **Work Packages**



WP 8.4.2
Development of highly-granular dual-readout fiber-sampling calorimeters

INFN - Univ. Sussex - CAEN

# Reloading fibers



While milling the SiPM interface surface, the machine stopped, hitting the surface itself

10 S fibers broken between module and interface



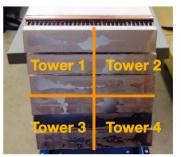
**≻**Glued

➤ Damages Recovered







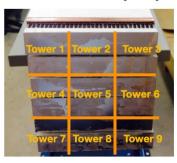



**Precise Drilling** 

# Plate-based prototype: fiber and readout config <



### Module #1 (2x2)




| Tower#1 | Tower#2 |
|---------|---------|
| Tower#3 | Tower#4 |

### **Combination of fibers for Module#1**

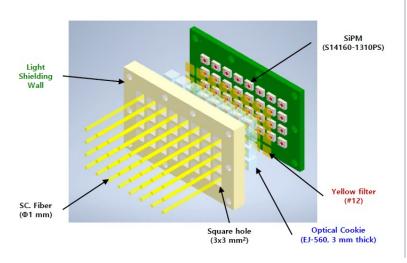
|                                 | Tower #1                      | Tower #2                      | Tower #3                         | Tower #4                       |  |
|---------------------------------|-------------------------------|-------------------------------|----------------------------------|--------------------------------|--|
| Scintillation fibers            | Round<br>/<br>Single cladding | Round<br>/<br>Single cladding | Round<br>/<br>Double<br>cladding | Square<br>/<br>Single cladding |  |
| Cherenkov<br>fibers             |                               | Round / Si                    | ingle cladding                   |                                |  |
| Readout<br>detector<br>(2*4 ch) | 2 PMTs                        | 2 MCP-PMTs                    | 2 PMTs                           | 2 PMTs                         |  |

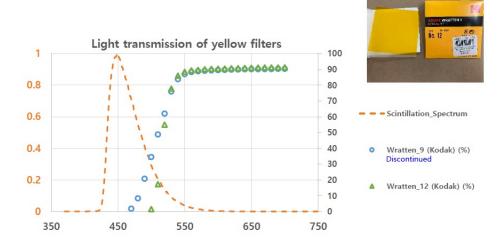
### Module #2 (3x3)



| Tower#1 | Tower#2 | Tower#3 |
|---------|---------|---------|
| Tower#4 | Tower#5 | Tower#6 |
| Tower#7 | Tower#8 | Tower#9 |

### Combination of fibers for Module#2


|                                    | Tower #1~4 and #6~9     | Tower #5  |  |  |
|------------------------------------|-------------------------|-----------|--|--|
| Scintillation fibers               | Round / Single cladding |           |  |  |
| Cherenkov<br>fibers                | Round / Single cladding |           |  |  |
| Readout<br>detector<br>(400+16 ch) | 16 PMTs                 | 400 SiPMs |  |  |




In the dual readout calorimeter, an optical cookie is used for light transmission and detector safety between the fiber and the readout detector.

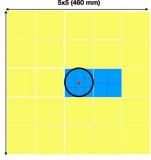
For the scintillation light, the light yield less than 500 nm is too high, so a yellow filter is used to reduce the light transmission.

### SiPM board for 32 scintillation fibers

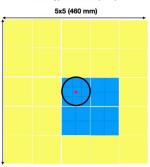




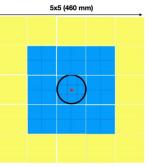
Light Shielding Wall can prevent the cross-talk in between light yield from each fiber.


Note that changing the yellow filter from #9 to #12, -> reduced transmission near 500 nm wavelength

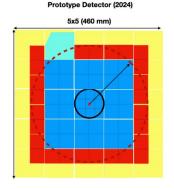
-> similar light transmission over 530 nm


# Plate-based prototype – roadmap to full containment

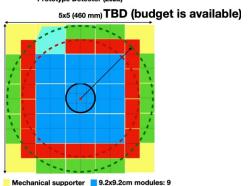



Prototype Detector (2021) 5x5 (460 mm)




Prototype Detector (2022)




Prototype Detector (2023)



Aim to assemble the modules at CERN and do test beam every year



Prototype Detector (2025)



1/2 modules: 13 (Opt1) 1/2 modules: 11 (Opt2)

3D-printing module