

Particle Id at Z/Higgs factories

Michele Selvaggi

(in collaboration with F.Bedeschi and L. Gouskos) CERN

November 11, 2021 - CEPC workshop

- Particle Identification is crucial for virtually all final state:
 - Exclusive physics:
 - **B**, D, τ physics (Z pole)
 - E.g : CP violation in $B_s \rightarrow D_s K$:
 - $\circ \quad \mathsf{D}_{s} \rightarrow \ \phi(\mathsf{KK}) \ \pi^{\scriptscriptstyle +} \ (charged), \ \mathsf{D}_{s} \rightarrow \phi(\mathsf{KK}) \ \rho^{\scriptscriptstyle +}(\pi^{0}\pi^{\scriptscriptstyle +}) \ (neutral)$
 - Rare H decays (γγ, ττ, μμ, Ζγ)

- Inclusive hadronic decays (flavour tagging)
 - $H \rightarrow jj Z \rightarrow jj$ (Z crucial for calibration)
 - j=u,d,s,c,b,(g)

Challenge: cover wide variety of final states in a wide energy range (1-50 GeV)

- Lepton, photon ID:
 - \circ e/y separation: tracking , particle-flow
 - γ/Π^0 : Calorimeter granularity (see next talk)
 - e/pi: tracker / calorimetry / particle-flow
 - mu/pi: detector design (pi containment), pointing muon detector ?

- п/К/р separation:
 - \circ dE/dx (dN/dx) method: p ~ 5-30 GeV
 - Time of flight: p ~ 1-5 GeV
- K_L/n:
 - Calorimetry + time of flight ?
- Indirect particle Id:
 - Secondary vertex reconstruction
 - $\bullet \quad b \to c \to s \text{ decay chains}$

will focus mainly on jet flavour tagging in this talk

Goals:

- Develop a versatile jet flavour tagger for the FCC-ee:
 - Identify with high purity light / strange / charm / beauty jets
 - multi-class classifier

- Understand the detector requirements/optimize design
 - vertexing and PID capabilities of the FCCee detector

Basics of flavour tagging (strange)

- Large Kaon content
 - Charged Kaon as track:
 - K/pi separation
 - TOF
 - dEdx/dNdx
 - Neutral Kaons:
 - $K_S \rightarrow \pi\pi$
 - Displaced 2 track vertex
 - 4 photons
 - TOF vs n ?

Detector constraints:

Need power pixel/tracking detectors

- good spatial resolution
- timing detectors
- charged energy loss (gas/silicon)

- Signals from primary ionisations can be separated by few ns
- Count number of primary ionisation clusters along track path dN_{cl}/dx → poisson distributed
- Avoids large landau flukes that one gets with traditional dEdx method

Cluster counting dN/dx

- Count number of **primary ionisation** clusters along track path
- Module added in Delphes

IDEA detector:

covers wide momentum range (~2-30) GeV

$$t_{\rm flight} \equiv t_{\rm F} - t_{\rm V} = \frac{L}{\beta} = \frac{L\sqrt{p^2 + m^2}}{p} = \frac{LE}{\sqrt{E^2 + m^2}}$$

- Ingredients
 - \circ t_F : final time (with MTD/ calorimeter)
 - L: path length
 - Charged:
 - t_v : vertex time
 - σ_t (beamspot) ~ 12 ps (lower bound, can be further constrained using all tracks)

• can assume
$$t_v = t_v(MC)$$

- p:tracking
- Neutral:
 - $t_v = 0$
 - E = calorimeter

note: E resolution poor at low energy for neutrals, will dominate m_{tof}

$$m_{\text{t.o.f.}}^{(c)} = p \sqrt{\left(\frac{t_{\text{flight}}}{L}\right)^2 - 1}$$

for displaced (e.g. K_s), can always use constraint $t_{_V}$ = r_{_V} / $\beta_{_V}$

$$m_{\rm t.o.f.}^{(n)} = E \sqrt{1 - (\frac{L}{t_{\rm flight}})^2}$$

- Charged: Allows for good K/pi separation at low momenta:
- Time smearing/ TOF modules implemented in Delphes

1300

12000

11000

10000

 $-\pi$

-K

time of flight [ps]

As expected charged $(\pi/K/p)$ separation > (K_1/n)

Combined PID for charged particles

3 std deviation K/pi separation for tracks with p < 30 GeV

 σ_{t} = 30 ps

FCCee detector

- Ideal for flavour identification [hence: measure Higgs couplings]
 - Impact parameter resolution
 - Low material budget tracker (minimise multiple scattering)
 - Small beam-pipe 1.5 cm -- investigating 1 cm
 - PID capabilities
 - dEdx (Si tracker) -- Cluster counting (Drift)
 - Time of flight -- timing layer

Michele Selvaggi

CEPC workshop - November 2021

- MC Samples:
 - MG5+Pythia8 used to generate:
 - $ee \rightarrow ZH \rightarrow vvXX events$ (X: g, ud, s, c, b)
- Detector response based on Delphes:
 - Including FastTrackCovariance (F. Bedeschi
 - Computes:
 - full track covariance matrix (5x5)
 - Including MS
 - smeared track using the off-diagonal terms
 - path length and dN/dx for various gas mixes
 - Time of flight for charged and neutral
 - Allows fast turn-around when trying different detector options
- Jets clusters with the generalized-kT algorithm using R=1.5
 - Similar to the anti-kT algorithm [IRC safe]

IDEA

Jet tagging as "particle" cloud

Point cloud:

- points (un-ordered)
- input features: (x,y,z) 3D coordinates

Learn "local" structure, move to more "global" features

Graph Neural networks:

Generalizing Convolutional neural network for un-ordered/sparse images

check Huilin Qu presentation tomorrow for more details!

Particle cloud:

- particles (un-ordered)
- input features:
 - 2D coordinates (eta x phi)
 - momentum
 - charge/ID
 - displacement ...

DGCNN: [arXiv:1801.07829]

ParticleNet: [arXiv:1902.08570]

Table 1. Set of input variables	
Variable	Description
Kinematics	
$E_{\rm const}/E_{\rm jet}$	energy of the jet constituent divided by the jet energy
$\sin(\theta_{\rm jet,const})$	sin of the angle between the constituent momentum and the jet momentum
$\cos(\theta_{\rm jet,const})$	\cos of the angle between the constituent momentum the jet momentum
Displacement	
SIP _{2D}	signed 2D impact parameter of the track
SIP_{2D}/σ_{2D}	signed 2D impact parameter significance of the track
SIP_{3D}	signed 3D impact parameter of the track
SIP_{3D}/σ_{3D}	signed 3D impact parameter significance of the track
$d_{ m 3D}$	jet track distance at their point of closest approach
$d_{ m 3D}/\sigma_{ m 3D}$	jet track distance significance at their point of closest approach
PID	
\overline{q}	electric charge of the particle
$m_{ m t.o.f.}$	mass calculated from time-of-flight
dN/dx	number of primary ionisation clusters along track
isMuon	if the particle is identified as a muon
isElectron	if the particle is identified as an electron
isPhoton	if the particle is identified as a photon
isChargedHadron	if the particle is identified as a charged hadron
isNeutralHadron	if the particle is identified as a neutral hadron

Inputs: 75 particles/jet

Training details:

- 1M jets split equally between classes
- 30 epochs
- Still room for improving the training details

- Small room for improvement on the PID, in particular for strange tagging
 - TOF/dNdx methods complementary
 - 3 ps vs 30 ps resolution does not seem to make a large difference
 - dNdx + 30 ps timing seems to offer close to optimal separation power

- Expect smaller improvement from PID vs strange tagging
- Small room for improvement on the PID, in particular for strange tagging
 - TOF/dNdx methods complementary
 - 3 ps vs 30 ps resolution does not seem to make a large difference
 - dNdx + 30 ps timing seems to offer close to optimal separation power

- A first version of a jet identification algorithm based on **PF candidates** and **PID** and **advanced ML** in place
 - Multi-class classifier b/c/s/ud/g
 - Results promising, in particular for charm and strange tagging
- PRELIMINARY conclusions:
 - Current PID using dNdx with 30 ps timing resolution seems to be close to optimal
 - Usual caveats of Delphes simulation (e/pi/gamma separation optimal)
- Next [short-term] steps:
 - propagate detector design choice to final sensitivity (studying H→ ss sensitivity for example)
 - address tagger calibration (at the Z pole)
 - provide framework for training/testing

Backup

Basics of flavour tagging (b/c)

Detector constraints:

Need power pixel/tracking detectors

- Good spatial resolution
- As little material as possible
- Precise track alignment

- Large lifetime
 - b (c) lifetime ~ps (~0.1ps)
 - b (c) decay length: ~5
 (2-3) mm for ~50 GeV
 boost
- Displaced vertices/tracks
 - Large impact parameters
 - Tertiary vertices when B hadron decays to C hadron
- Large track multiplicity
 - ~5 (~2) charged tracks/decay
- Non-isolated e/µ
 - ~20 (10)% in B (C) decays

Impact parameter performance

Credits to Sylvie Braibant

IDEA detector:

Input variables

• Comparison of input distributions for different jet flavors

• More comparisons:

https://selvaggi.web.cern.ch/selvaggi/FCC/FCCee/FlavourTagging/

Michele Selvaggi

Convolution on point cloud: EdgeConv

EdgeConv: convolution on a graph

- **point cloud** is treated as **graph**, where each point is a **vertex**
- **local patch** defined by finding k-nearest neighbours
- **convolution** function:
 - o define "edge feature" for each center-neighbour pair Key point:

$$\bullet e_{ij} = h(x_i, x_j)$$

• aggregate all the features symmetrically:

•
$$\mathbf{x}'_i = \text{mean}_j \mathbf{e}_{ij}$$

Generalizing CNN for un-ordered/sparse images

Flavour tagging using ParticleNet

- Developing a flavour tagging algorithm based on ParticleNet
 Jet is represented as a "particle cloud"
- Follow a hierarchical learning approach:
 - **First:** Learn "local" structures; **Then:** move to more "global" features
 - Treat the particle cloud as a graph

Jet:

Particles are the vertices of the graph

Relationships between the particles are the **edges** of the graph

Identify "neighboring" particles

ParticleNet

- **local neighborhood** information automatically incorporated
- EdgeConv layers can be stacked (as CNNs), and learn local (shallow layers) and global features (deep layers)
- **new features** provide new coordinates (in some abstract latent space) to compute "local patch" in new iteration

EdgeConv block

ParticleNet architecture

Designing a jet flavour tagging

- Halgorithms a jet is one of the key aspects of algorithms for jet tagging
 - Improve performance \rightarrow extend physics reach
 - \circ Lead to fresh insight into jets \rightarrow deepen our understanding of jet physics

- Particles [associated to each jet] are intrinsically unordered
 - \circ i.e., ordering by p_T(particle) or displacement from PV: suboptimal
 - Primary information: 2D coordinates in theta-phi space
 - Include additional features / particle: energy, displacement, charge, track quality, PID ...

Performance vs theta (b/c)

b-tagging

c-tagging

PRELIMINARY !! (LOW STATS TRAINING)

Michele Selvaggi

Comparison: IDEA vs. CLD

- No big differences between in input variables between IDEA & CLD
 - small difference in material budget observed on light jets since dxy ~ 0
 - expect slightly better performance for IDEA detector for discrimination vs light

