Forward-backward asymmetries of the heavy quark pair productions in e^+e^- collisions at $\mathcal{O}(\alpha_s^2)$

Long Chen

Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University

The 2021 International Workshop on Circular Electron-Positron Collider, November 10

> based on JHEP 1612 (2016) 098 [arXiv:1610.07897] JHEP 1701 (2017) 053 [arXiv:1611.07942] Eur. Phys. J. C80 (2020) 649 [arXiv:2003.13941]

Motivation and Background

 e^+e^- collisions offer a clean environment for studying properties of heavy quarks, e.g. masses and electroweak couplings of the top and bottom quarks ($\sin^2 \theta_{eff}^f$).

 $[\rightarrow \text{Talks by Siqi Yang, Johann Usovitsch}]$

- ► $b\bar{b}$ pair production at Z-pole: the long-standing 2.9 (2.4) σ tension between the direct determination of A_{FB}^b and its global SM fit;
- $t\bar{t}$ pair production:

important for precision physics at future e^+e^- colliders.

Concerning high order QCD corrections:

NNLO in the massless quark limit [Attarelli, Lampe 93; Ravindran, Neerven 98; Catani, Seymour 99; Weinzierl 07]

 $e^+e^-
ightarrow t ar{t}$ @ NNLO QCD [Gao, Zhu, PRL (2014)]

 $e^+e^- o tar{t}$ near-threshold @ NNNLO [M. Beneke *et al.*, PRL (2015)] ($\sigma^{tar{t}}_{tot}$ only)

Our aim was a stable fully differential NNLO QCD calculation of massive $Q\bar{Q}$ productions in the antenna subtraction framework for $e^+e^- \rightarrow Q\bar{Q} + X$ at $\mathcal{O}(\alpha_s^2)$ in the continuum.

Antenna-subtraction method

General idea of IR-subtraction methods: insert an *identity* $o = \int d\sigma^{S} - \int d\sigma^{S}$.

A (differential) cross section at LO: (F_I ⁽ⁿ⁾ defines the observable)

$$\sigma_{\rm LO} = \int_{d\Phi_n} |\mathcal{M}_n|^2 F_J^{(n)}$$

The NLO contribution:

$$\begin{split} \sigma_{\mathrm{NLO}} &= \int_{d\Phi_{n+1}} d\sigma_{\mathrm{NLO}}^{\mathcal{R}} + \int_{d\Phi_n} d\sigma_{\mathrm{NLO}}^{\mathcal{V}} \\ &= \int_{d\Phi_{n+1}} |\mathcal{M}_{n+1}^{\mathcal{R}}|^2 F_J^{(n+1)} + \left(\int_{d\Phi_{n+1}} d\sigma^{\mathcal{S}} - \int_{d\Phi_{n+1}} d\sigma^{\mathcal{S}} \right) + \int_{d\Phi_n} |\mathcal{M}_n^{\mathcal{V}}|^2 F_J^{(n)} \\ &= \int_{d\Phi_{n+1}} \left[\left(|\mathcal{M}_{n+1}^{\mathcal{R}}|^2 F_J^{(n+1)} \right)_{\epsilon=0} - \left(d\sigma^{\mathcal{S}} \right)_{\epsilon=0} \right] + \int_{d\Phi_n} \left[|\mathcal{M}_n^{\mathcal{V}}|^2 F_J^{(n)} + \int_1 d\sigma^{\mathcal{S}} \right]_{\epsilon=0} \end{split}$$

- $d\sigma^{S}$ should approach $d\sigma^{\mathcal{R}}_{NLO}$ locally in all IR-soft limit.
- *d*-dimensional (analytic) integrablity of $\int_{1} d\sigma^{S}$

Antenna-subtraction method

General idea of IR-subtraction methods: insert an *identity* $o = \int d\sigma^{S} - \int d\sigma^{S}$.

Exploiting the universal IR-factorization property of color-ordered partial QCD-amplitudes,

Figure: The Antenna-factorization of a color-ordered partial amplitude (PRD 71, 045016)

$$d\sigma_{\mathrm{NLO}}^{\mathcal{S}} \propto \sum \mathbf{A}_{a1b} \left(p_a, p_1, p_b \right) \otimes |\mathcal{M}_n^{\mathcal{R}} \left(\cdots, P_{\hat{a}}, P_{\hat{b}}, \cdots, p_{n+1} \right)|^2$$

where the A_{a1b} is the *antenna-function*.

Ingredients for $e^+e^- \rightarrow Q\bar{Q} + X$ (Q = t, b)

Schematically, the NNLO corrections with IR subtraction terms:

$$\begin{aligned} d\sigma_{\rm NNLO} &= \int_{d\Phi_4} \left(d\sigma_{\rm NNLO}^{RR} - d\sigma_{\rm NNLO}^{S} \right) \\ &+ \int_{d\Phi_3} \left(d\sigma_{\rm NNLO}^{RV} - d\sigma_{\rm NNLO}^{T} \right) \\ &+ \int_{d\Phi_2} d\sigma_{\rm NNLO}^{VV} + \int_{d\Phi_3} d\sigma_{\rm NNLO}^{T} + \int_{d\Phi_4} d\sigma_{\rm NNLO}^{S} \end{aligned}$$

RR: Tree-level double real radiation correction: $S \rightarrow Q\bar{Q}Q\bar{Q}$, $Q\bar{Q}gg$, and $Q\bar{Q}q\bar{q}$ ►

implicit IR-singularity removed by $d\sigma_{\rm NNLO}^{S}$.

RV: One-loop correction to $S \rightarrow Q\bar{Q}g$ ►

explicit and implicit IR-singularity removed by $d\sigma_{
m NNLO}^T$

• VV: Two-loop corrections to $S \rightarrow Q\bar{Q}$

explicit IR-poles removed by $\int_{d\Phi_3} d\sigma_{\text{NNLO}}^T + \int_{d\Phi_4} d\sigma_{\text{NNLO}}^S$

Results: $t\bar{t}$ total cross section (above threshold)

The total cross section σ ($e^+e^- \rightarrow \gamma, Z \rightarrow t\bar{t} + X$) with $m_t = {}_{173.34}$ GeV at $\mathcal{O}(\alpha_s^2)$ with scale variations indicated by dashed lines, $\mu_R = \in [\frac{E_{cms}}{2}, 2E_{cms}]$ [JHEP 1612 (098)]

Results: The $\cos \theta_t$ distribution

 $heta_t = \angle(e^-,t)$ scattering angle between t and e^- beam (LO: black NLO: red NNLO: blue)

Results: Forward-Backward Asymmetry of *t* quark

$$A_{FB} \equiv \frac{N_F - N_B}{N_F + N_B} = \frac{\sigma \left(\cos \theta_t > o\right) - \sigma \left(\cos \theta_t > o\right)}{\sigma \left(\cos \theta_t > o\right) + \sigma \left(\cos \theta_t > o\right)}$$

The **unexpanded** A_{FB} of top-quark (in percent) [JHEP 1612 (098)]

\sqrt{s} [GeV]	A_{FB}^{LO} [%]	$A_{FB}^{ m NLO}$ [%]	A_{FB}^{NNLO} [%]
360	14.94	$15.31_{-0.02}^{+0.02}$	$15.82^{+0.08}_{-0.06}$
400	28.02	$28.77_{-0.04}^{+0.05}$	$29.42_{-0.09}^{+0.10}$
500	41.48	$42.32_{-0.05}^{+0.06}$	$42.83^{+0.08}_{-0.07}$
700	51.34	$51.78^{+0.03}_{-0.03}$	$52.03^{+0.04}_{-0.04}$

The numbers in superscript (subscript) refer to the changes if μ_R is set to $2\sqrt{s}$ ($\sqrt{s}/2$) compared to **the central value at** $\mu_R = \sqrt{s}$.

Agreement with [Gao, Zhu, PRL (2014)] was found.

Results: Forward-Backward Asymmetry of t quark

The A_{FB} of top-quark **expanded** in α_s :

$$A_{FB}^{\text{NLO}} = A_{FB}^{\text{LO}}(\mathbf{1} + A_{\mathbf{1}})$$
$$A_{FB}^{\text{NNLO}} = A_{FB}^{\text{LO}}(\mathbf{1} + A_{\mathbf{1}} + A_{\mathbf{2}})$$

\sqrt{s} [GeV]	A_{FB}^{LO} [%]	$A_{FB}^{ m NLO}$ [%]	$A_{FB}^{ m NNLO}$ [%]	A ₁ [%]	<u>A</u> 2 [%]	$\delta A_{FB}^{\text{NNLO}}$ [%]
360	14.94	$15.54^{+0.05}_{-0.04}$	$16.23_{-0.10}^{+0.12}$	$4.01^{+0.35}_{-0.29}$	$4.58^{+0.46}_{-0.38}$	±0.59
400	28.02	$28.97^{+0.08}_{-0.07}$	$29.63^{+0.11}_{-0.10}$	$3.41^{+0.29}_{-0.25}$	$2.36_{-0.11}^{+0.11}$	±0.27
500	41.48	$42.42_{-0.07}^{+0.08}$	$42.91^{+0.08}_{-0.07}$	$2.28^{+0.19}_{-0.16}$	$1.18\substack{+0.01 \\ -0.01}$	±0.13
700	51.34	$51.81^{+0.04}_{-0.03}$	$52.05_{-0.04}^{+0.04}$	$0.91^{+0.07}_{-0.06}$	$0.47_{-0.01}^{+0.01}$	±0.06

 $\delta A_{FB}^{\text{NNLO}}$ signifies the uncertainties due to $\delta m_t = \pm 0.5$ GeV (around 173.34 GeV).

[JHEP 1612 (098)]

Results: $b\bar{b}$ -production at Z-pole with $m_b \neq o$

 θ_b (θ_T): scattering angle between *b*-quark (thrust-axis) and e^- beam (LO: black NLO: red NNLO: blue)

Results: $A_{FB}^{o,b}$ at Z-pole for massive *b*-quarks

The α_s and α_s^2 QCD correction factors to LO A_{FB}^b at Z-pole ($\mu_R = m_z$)

	1 + A1	$1 + A_1 + A_2$	A_1	A2
thrust axis:	$0.9713^{+0.0027}_{-0.0026}$	0.9608+0.0022 -0.0025	-0.0287	-0.0105

$$\begin{split} A_{\rm FB,exp}^{b,T} &= \left[{\bf 1} + A_{\bf 1} + A_{\bf 2} \right] \left(A_{\rm FB}^{o,b} \right)_{\rm exp} \equiv \left({\bf 1} - C_{\rm QCD}^T \right) \left(A_{\rm FB}^{o,b} \right)_{\rm exp} \\ A_{\rm FB}^{o,b} &= \left(A_{\rm FB}^{o,b} \right)_{\rm exp} + \delta A_{\rm FB}^b \,. \end{split}$$

$$\begin{split} & \left(A_{\rm FB}^{\rm o,b}\right)_{\rm pre} \ = \ 0.0992 \pm 0.0016 \ \text{[arXiv:1012.2367]} \\ & \left(A_{\rm FB}^{\rm o,b}\right)_{\rm SM-fit} \ = \ 0.1038 \pm 0.0007 \ \text{[Phys. Rept. 427 (06)]} \\ & \left(A_{\rm FB}^{\rm o,b}\right)_{\rm new} \ = \ 0.0996 \pm 0.0016 \ \text{[JHEP 1701 (053)]} \end{split}$$

The pull between $A_{\rm FB}^{{\rm o},b}$ and the SM fit is slightly reduced from 2.9 σ to 2.6 σ [JHEP 1701 (053)]

(See [d'Enterria, Yan, arXiv:2011.00530] for an updated analysis of the theoretical uncertainties)

$A_{FB}^{o,b}$ with Principle of Maximum Conformality (PMC)

Improvement by applying the PMC: resum all explicit $\ln \mu_R^2$ terms in A_{FB} that are related the QCD $\beta = d \ln \alpha_s / d \ln \mu_R^2$ function, absorbed into a new effective coupling $\alpha_s^{e\!f\!f} = \alpha_s(\mu_r^{PMC})$ [\rightarrow Talk by ShengQuan Wang] [Eur. Phys. J. C80 (649)]

	μ _r	LO	NLO	NNLO	Total	$A_{FB}^{o,b}$
Conv.	MZ	1	-0.0287	-0.0105	0.9608	0.0996
PMC	$\mu_r^{\text{PMC}} = 9.7 \text{GeV}$	1	-0.0436	-0.0035	0.9529	0.1004

Discussion: $A_{FB}^{b,\text{fit}}$ v.s. $A_{FB}^{o,b}$

The tension between $A_{FB}^{b,\text{fit}}$ and $A_{FB}^{o,b}$ seems to decrease over the years... [JHEP 1701 (053), Eur. Phys. J. C80 (649)]

$A_{FB}^{b, \text{fit}}$ v.s. $A_{FB}^{o, b}$	A ^{o,b} _{FB} ("massless") 0.0992	A ^{o,b} (massive) 0.0996	$A_{FB}^{o,b}$ (massive+PMC) 1.004
0.1038 [Phys. Rept. 427 ('06)]	2.9 σ	2.6 σ	2.1 σ
0.1032 [Eur. Phys. J. C 74 ('14)]	2.5 σ	2.25 σ	1.8 <i>σ</i>
0.1030 [Phys. Rev. D 98 ('18)]	2.4 σ	2.1 σ	1.6 σ

On the other hand, the experimental uncertainty (currently, \sim 1.6%), is expected to be greatly reduced at future lepton colliders!

(See [d'Enterria, Yan, arXiv:2011.00530] for an updated analysis of the theoretical uncertainties)

Summary and Outlook

- Predictions for the cross section, for the A_{FB} of the top-quark, as well as several distributions at order $\mathcal{O}(\alpha_s^2)$ in e^+e^- collisions have been made.
- Application to A_{FB} for massive *b*-quarks at *Z* pole to $\mathcal{O}(\alpha_s^2)$: a preliminary analysis shows that the tension between the $A_{FB}^{0,b}$ and the SM fit $A_{FB}^{b,\text{fit}} = 0.1038$ (0.1030) is slightly reduced from 2.9 σ (2.4 σ) to 2.6 σ (2.1 σ), and further down to 2.1 σ (1.6 σ) with the PMC optimization procedure.
- ► The calculation can be generalized straightforwardly to the cases of polarized top quarks, and with polarized *e*⁺*e*⁻ beams.
- ▶ In addition, one may consider the determination of the order α_s^2 corrections to the forward-backward asymmetry for two b-jet final states in e^+e^- collisions.

Summary and Outlook

- Predictions for the cross section, for the A_{FB} of the top-quark, as well as several distributions at order $\mathcal{O}(\alpha_s^2)$ in e^+e^- collisions have been made.
- Application to A_{FB} for massive *b*-quarks at *Z* pole to $\mathcal{O}(\alpha_s^2)$: a preliminary analysis shows that the tension between the $A_{FB}^{0,b}$ and the SM fit $A_{FB}^{b,\text{fit}} = 0.1038$ (0.1030) is slightly reduced from 2.9 σ (2.4 σ) to 2.6 σ (2.1 σ), and further down to 2.1 σ (1.6 σ) with the PMC optimization procedure.
- The calculation can be generalized straightforwardly to the cases of polarized top quarks, and with polarized e^+e^- beams.
- In addition, one may consider the determination of the order α²_s corrections to the forward-backward asymmetry for two b-jet final states in e⁺e[−] collisions.

すℋイハメ 少じひ