LumiCal: Spatial resolution for a round 28-40 mm cone with Y-crotch

Suen Hou 侯書雲 suen@sinica.edu.tw

2021.11.11

https://indico.ihep.ac.cn/event/14938/

outline

- Bhabha Luminosity
- *Multiple Scattering before Flange: inner Lumi Si-wafers after Flange: Y-crotch, Q-pole front*
- X-section with a 28-40 round pipe Y-crotch acceptance
- LYSO calorimeter option

Luminosity by Bhabha

- For Stanard Model Cross sections Z-lineshape dominant : $e^+e^- \rightarrow Z \rightarrow q\bar{q}$ SM events: $N = \sigma \cdot [L]$
- Luminosity L

by counting Bhabha elastics scattering

$$e^+e^- \rightarrow e^+e^-$$

- QED process, theoretical < 0.1% precision</p>
- detect a pair of **back-to-back** e⁺e⁻

Bhabha cross section

$$\mathcal{L} = rac{1}{arepsilon} rac{N_{
m acc}}{\sigma^{
m vis}} ~~ \sigma = rac{16\pilpha^2}{s} \left(rac{1}{ heta_{min}^2} - rac{1}{ heta_{max}^2}
ight)$$

Luminosity precision

Systematic error, Center-of-Mass frame

 $\delta L/L \sim 2 \delta \vartheta / \vartheta_{min}$ $\delta L/L < 10^{-3}$ for Higgs factory → $\delta \vartheta = 15 \mu Rad @ θ_{min} = 30 mRad$

→ OFFSET on the
 "mean of fiducial edge"
 cause for δN on Bhabha counting
 @z = 1000 mm r=30mm,
 δϑ = 15 μRad, dr = 15 μm

LumiCal design goal:

- Spatial resolution as sharp as possible
- Describe the reso./MS shape of $\delta < \theta_{min} >$

offset on the **mean of** θ_{min} **→** LUMINOSITY error

Beam-pipe, 28-40 mm Round

Workshop_20200828 Dongguan东莞

Detection Angle range: 38~80mrad

80 mrad

nrad

38

- > On the detection path, as little mass as possible
- The structure of lumical is not yet determined, so the support and cooling structure should be further optimized and improved.

LumiCal access, $\vartheta_{min} = 38 \text{ mRad}$ is too high **Bhabha < 40 nb**

Multiple scattering

- **Spatial resolution** on Bhabha electron impact position
 - \rightarrow θ of electrons, determine $\delta L/L$
- GEANT simulation on multiple scattering with silicon wafers surrounding beampipe
 1. Round, straight beam pipe r=28 mm (CDR design)
 - Si-wafer // beam, air-gap
 - 2. Round cone pipe r = 28 40 dual 20 mm
 - *3. splitting pipes* x = 20 35 dual 20 mm, y = 20 mm

2.

1) Multiple scattering, 28mm straight tube

- 50 GeV electron traversing Al-pipe :
 (0.5 mm Al 0.5 mm Air 0.35 mm Air)
- Multiple scattering deviation
 - simulated for ϕ =28 mm
 - 1. exiting Al-pipe
 - 2. Si-layer attached, *no air-gap* (nearest)

X3TB	RUN EVENT	NR NR	1 14	
				X
			N	\bigvee
		\searrow	Circ.	
				<u>}</u>
		\subset		¢
		/		
	//.			

		θ	<u>to z: r/z =tan θ</u>
50 GeV (θ,φ)	σ (Z)	σ(θ)	1/tan(θ)
e (40 mR, 0°)	86 µm	8.9 μRad	25.0
e (55 mR, 0º)	37 µm	7.3 μRad	18.2
e (60 mR, 0º)	28 µm	6.5 μRad	16.6
e (70 mR, 0º)	19 µm	5.8 μRad	14.3

2) 28-40mm cone pipe (2021)

• Tilt the Al pipe from ϕ =28 mm to ϕ =40 mm thickness (mm): 0.5 Al – 0.5 Air – 0.35 Air

○ *Si wafer parallel to z-axis,* r_{min}=22mm

CONG (70~100 mm) air gap to Al-pipe, large Multiple Scattering

poor lumi si-wafer design !

400 ThEs Emm Es	TbO	S 2mm scin	Acos(.99) = .14154 fau	
409 TDFe 5mm Fe	Z=0~	[,] 970 mm r= 12.39cm +.2cm	Acos(.992) = .1266 rad	FgFe Flange 25mm
Z=0° 970 mm connecting to	TbO	2mm scin	atan(123.6/970) = .12678 rad	Z=675- 700mm
r= 12.34cm ~+.5cm, FE	Z=0~	111cm r= 15.7cm +.2cm	ESOI SiM tur	r= 112~150 mm
	71.10		Dogly 3.5mm	Alt Omm Siz
	TDIS	2mm scin	Fing 10mm thick flange R = 15.5-70. m	nm
409 The Smm Fe	Z=0*	111m r= 15cm +.2cm	Z=520~530 mm 22.3-100.2 m	rad @ 2 1696
r= 15.2 cm ~+.5	TbIS	2mm scin	r= 55~123.2 mm	
z=0~118cm	Z=0~	[•] 970 mm r= 12.32cm +.2cm	Acos(-992) FCO: COM	
Edge 15/118=tan(.1266)	7	-16 - 52.0 cm	Fwin window 2 mile 1266 rad Deck=3 5	two layers
	2	R2Sn Si octagon rmin =4.4 cm 128~66 m	Rad29-522 R=22-11	2 mm
		R1Sn Si octagon rmin =2.2 cm 64~33 mF	Rad up 55 mm 100 mrad -> 33.1-1	167.1 mrac
		Z=34.0-66.0 cm 32long 25x1.28	428 ELSi Si deck @ Z= 664	4mm
			7=522~524	
		DuSc r=15 5 21 5mm +0 5mm Scintillat	R = 15,5,55, mm	
Z=200 mm		Ouse 1-13,3/21.5min +0.5min Schular	29.7-105-mrad	
				FgAl Flange 25mm
	15	Air gap =0.5cm	7-520 mm	7=675- 700mm
	13 mm	OuAl outer Al pipe	2-520 mm	r= 20 ~112 mm
	:14 11111	7=200~675 mm		1-20, 112, 100
401 InBPipe full +-200 mm	p9	@200 r=28/2+1 mm 0 5mm thick	Fpip flange pipe 1.5 mm thick	Fond Elange 20mm
InBP Inner Be pipe		@675 r=40/211 mm, 0.5mm thick	Z= 522-716 mm	Fend Flange 20mm
Z=0~200 mm,		@675 1=40/2+1 mm, 0.5mm thick	at Z=512 r= 14 – 15.5 mm	Z=696 - 716
inner diameter 28 mm 0.5mm t	thick	InAl Inner Cu pipe		r= 15.5~123.2 mm
		@200 inner r=28/2 mm 0 5mm thick	k	
OuBP outer Be nine		@675 inner r=40/2 mm		
7=0~200 mm		2015 miler 10/2 mil		
inner radius 29/211 mm 0.25m	un thick			
1000000000000000000000000000000000000	ITTT UNICK			

A ---- (00) A 4454 ---- d

2) Multiple Scattering on Si ring (parallel)

 $1/tan(\theta)$

28.6

25.0

18.2

o Al-pipe tilt 12.6 mRad (φ28 to 40 mm)
o Si-layer (r=22mm) parallel to beam (z-axis)
→ air-gap extracted from IP 70 ~ 100 mm
→ multiple scattering effect is magnified !!

σ(θ) Si^{1st}

31 µRad

37 µRad

41 µRad

Compare MS on Octagon Si layer, *primary track*

 $\sigma(Z)$ Si^{1st}

542 µm

489 µm

291 µm

mu (θ,φ)

(35 mR, 90°)

(40 mR, 90°)

(55 mR, 90°)

2) Multiple Scattering on Si ring (stick-on)

- \circ Al-pipe tilt 12.6 mRad (ϕ 28 to 40 mm) • *Si-layer parallel to Al-pipe*, gap = 1mm
- → air-gap from IP ~ 50 mm

Compare MS on Octagon Si layer, primary track

mu (θ,φ)	σ(Ζ) Si ^{1st}	<mark>σ(θ) Si^{1st}</mark>	1/tan(θ)
(35 mR, 90°)	475 μm	28 µRad	28.6
(40 mR, 90º)	301 µm	24 µRad	25.0
(50 mR, 90°)	161 µm	<mark>22</mark> μRad	20.0

Multiple Scattering behind the Flange

the **y-crotch** ϕ =40 to dual 20 mm pipes is **a low-mass, high cross section** window for Bhabha

3) Y-crotch window

- Duckbill slope on y-axis is 200 mRad, (z = 805–855mm, r = 20710 mm) electron traversing distance < 10 mm
- O Window on lab y-axis: θ = 15 25 mRad
 Bhabha cross section in clean phi region ~ 100 nb
- Electron θ measured by Si r-φ disk before LYSO

3) Si-wafers on Y-crotch

Round pipe φ=40 mm to dual pipes φ=20 mm
 Slabs on top/down of the Y-crotch
 z= 805 to 855 mm

slope = 197 mRad (11.3 deg)

- o Si wafer 1mm above
 - → air gap from IP: 6~6.5 mm
 Multiple Scattering effect suppressed very much

3) LumiCal Si-wafer spatial resolution

50 GeV electron, all hits on Si wafers

(primary e⁻ and secondaries)

Scan vertically phi = 90° through Y-crotch window

Multiple scattering estimated on

- 1) Octagon surrounding Al-pipe
- 2) Flange Si-disk
- 3) Y-crotch up/down slabs
- 4) LYSO front Si-disk

Lab (θ,φ)	1) σ(z) Oct Si	2) σ(x) Flg Si	3) σ(x) Y-cr. Si	4) σ (x) Ly-Si
e (15 mR <i>,</i> 90º)	-	-	0.55 μm	5.3 μm
e (20 mR, 90º)	-	-	0.41 μm	6.5 µm
e (25 mR, 90º)	-	-	0.88 μm	9.8 µm
e (30 mR <i>,</i> 90°)	-	-		95 µm
e (40 mR, 90º)	620 µm	52 µm		129 µm
e (55 mR, 90º)	373 μm	58 µm		114 µm
e (60 mR, 90°)	308 µm	65 µm		111 µm

1)

4) dual-20mm pipes, Lumical option

o round pipe φ<20 mm @IP split slowly to dual pipes, φ=20 mm, at Y-crotch

- 1) LumiCal Si wafers, vertical y-axis r_{min} = 10 mm
 → gain very much Bhabha X.section
- 2) Si wafers parallel to beam center
 - → multiple scattering acceptable σ(θ) ~10 µRad

Boosted Bhabha distribution

- Bhabha symmetric to out-going beam center boosted by the 33 mRad beam crossing (x,y) = (16.5, 0) @ z = 1000 mm
- High cross-section, low mass region:
 phi ~ 60° to 120° to beam center
- Bhabha acceptance: both e⁺ e⁻ detected
 Lab frame @ z = 1000 mm
 dual beampipe: r = 10 mm
 - y-axis: |y|>10 mm,
 - x-axis: (± 43 mRad to out-going beam center)
 - Lab $\theta(e^+) > 26.5 \text{ mRad}$ Lab $\theta(e^-) > 59.5 \text{ mRad}$

Bhabha cross-section, BHLUMI calculation Beam crossing 33 mRad,

- e^+e^- boosted to +x, off ring center
- back-to-back symmetric to out-going beam center $(x,y) = (16.5, 0 \text{ mm}) at z = \pm 1000 \text{ mm}$

50 GeV beam, both e⁺ e⁻ detected In fiducial range of *r* > 30 mRad

ϑ range = 30 – 80 mRad

Bhabha cross section > 50 nb

LYSO shower distribution

- Muon in 20 cm long LYSO
- GEANT at 40 mRad, dE/dx distributions
- Muon 50 GeV @40 mRad
- Multiple Scattering ~ 160 μm
 from upstream

dE/dx r(hits) - ref(z=900)r(hits)-ref(90) mm dE/dx deposits in LYSO z: 90-110 cm 20 10 900 925 950 975 1025 1050 1075 1000 1100 0 -2 z mm

5cm

5.218

r(hits)-ref(z) mm

18

21.71

0.1648

-0.3938E-02

r(hits) – ref(z of hits)

 χ^2/ndf

Meán

Sigma

Constant

19

LYSO shower distribution

- Electron shower in 20 cm long LYSO
- GEANT electron 50 GeV at 40 mRad
- Shower spread ~1 mm width
- Shower max ~7cm long

r(hits) - ref(z=900)

r(hits) – ref(z of hits)

LYSO shower distribution

- $\circ~$ Electron shower in 20 cm long LYSO
- o GEANT electron 100 GeV at 40 mRad
- Shower spread ~1 mm, max ~7cm long
- Distributions 100 GeV grow in z compatible to 50 GeV

r(hits) - ref(z of hits)

Discussion: Bhabha fiducial regione-hits

- For Bhabha X.section > 50 nB require θ_{min} < 30 mRad coverage, favor vert. direction
- Precision luminosity, Δ∫L ~ 10⁴
 requires minimal multiple scattering effect
 favor Y-crotch negative slope
- LumiCal Si wafer systems

before Flange: surrounding beampipe inner det volume behind Flange: **on Y-crotch**, **front of LYSO**

Discussion: Bhabha event ID **RING CENTER** LumiCal Colliding electrons bunch crossing 32 ns 0 FarForward Bhabha detected with aaaer e0000 Bhabha 1. both +z, -z Calo's E(cluster) > 0.5 E(beam) 50000 Cross section 2. back-to-back in phi BOOS 40000 event dominate in low theta edge 30000 16.5 mRad 20000 **CALO** system 0 10000 Connect 1. shower coverage 0.04 0.06 0.08 0.02 0.1 θ Rad (50 uR bin) favor >15cm crystal bar for shower coverage trade hori.-axis area to e.g. BPMs 2. segmentation (fine LYSO bars of 2x2mm) fast DAQ \rightarrow 32 ns/event to eliminate event overlap **DAQ deadtime** 700 83 1110