

ToF Measurement with Calorimeter Cluster

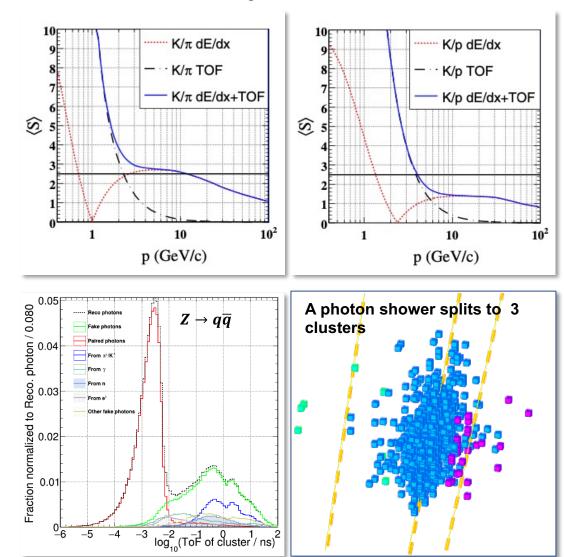
Yuzhi Che (IHEP)
Manqi Ruan (IHEP)

The 2021 international workshop on the high energy Circular Electron-Positron Collider November 8-12, 2021

Contents

What could cluster TOF resolution be reached in the CEPC baseline?

Motivation
 Introduction of showers, clusters & hits
 A basic TOF reconstruction algorithm
 Performance @ CEPC baseline
 Summary


Motivation

- Precise Cluster TOF information produces,
 - higher separation power
 - better PFO clustering.

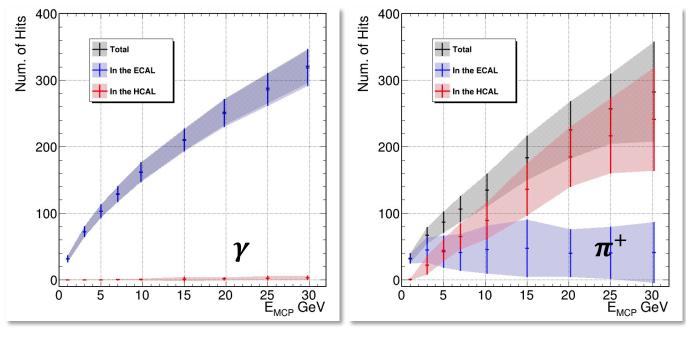
TOF measurement improves the reconstruction of basic level objects

An effective k[±]/π[±]/p[±] identification can be achieved with the combined information of dE/dx and TOF (assumed with a 50 ps time resolution).

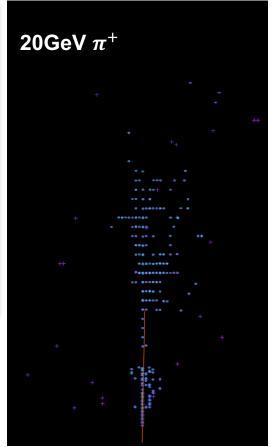
 Better PFO clustering (cluster fragments identification) can be achieved with the cluster TOF information.

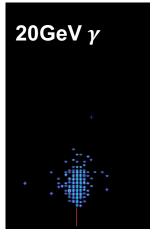
Introduction of showers, clusters & hits

The fundamental information: calorimeter hits


- energy & time distribution at truth level
- Clustering process

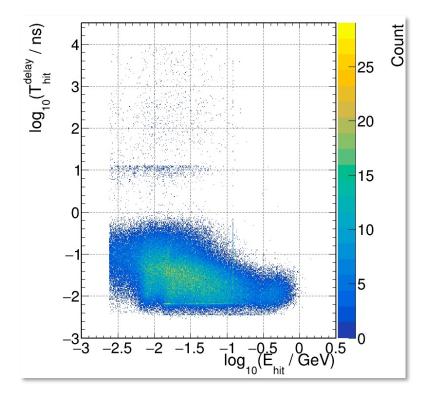
Arbor

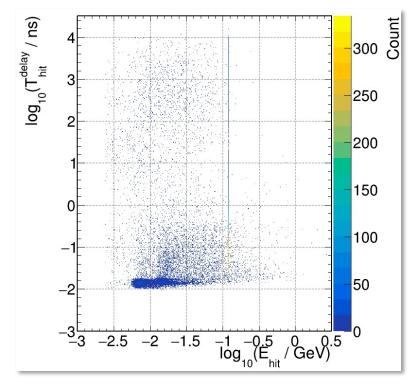

- Hit collection efficiency
- Detector response: the hit time resolution


The fundamental information: calorimeter hits

Single photon/pion samples with a set of energy points, in the CEPC baseline setup. Choose the 1-1 reconstruction events (where only 1 cluster is reconstructed).

Number of hits in ECAL/HCAL versus MC particle energy. The error bar represents the standard deviation of the hit num. distribution in the corresponding sample.




Calorimeter provides many hits for a particle shower

Hits time & energy distribution in single 10 GeV photon/pion samples.

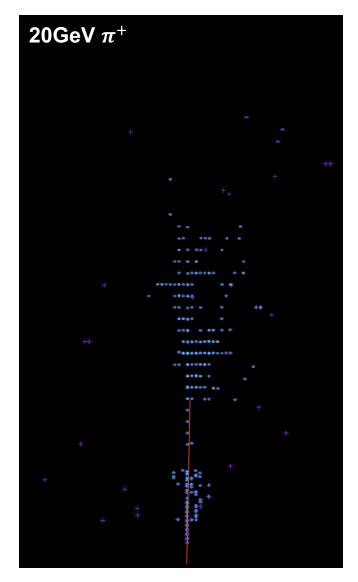
The Y axis:

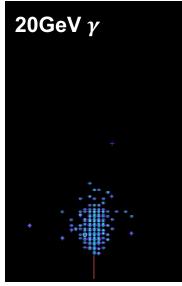
$$T_{hit}^{delay} = T_{hit}^{truth} - \frac{L_{IP \to hit}}{c}$$

Time vs. energy of **photon** shower hits

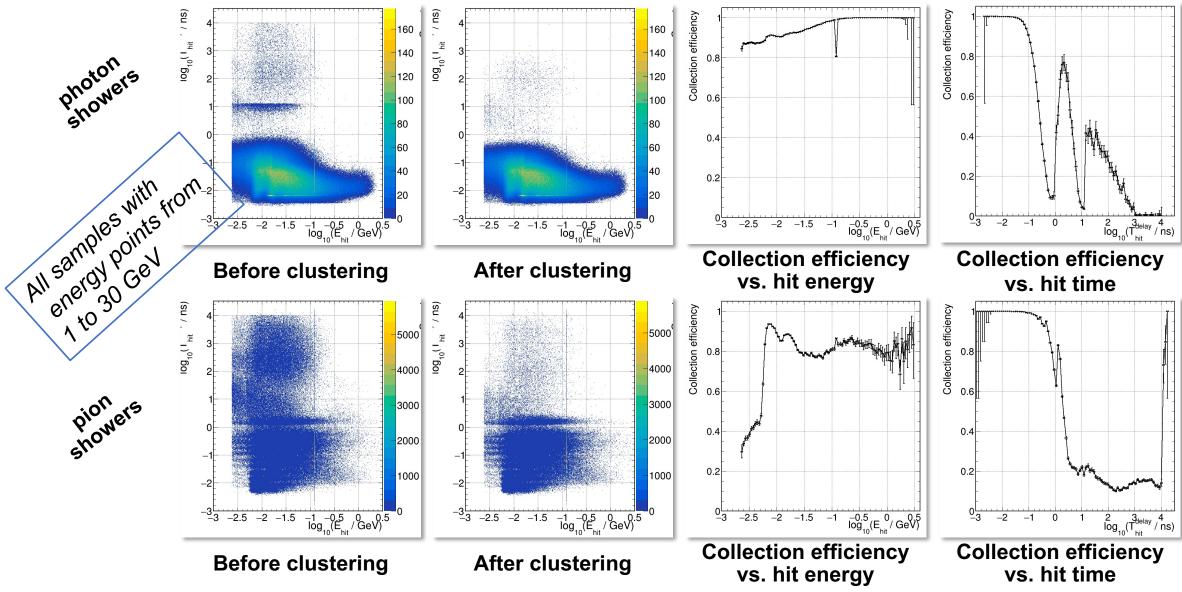
Time vs. energy of pi+ shower hits

Compared to the EM shower, the ECAL hits in the hadronic shower have lower energy and more compact and faster time.

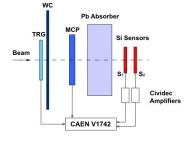

Clustering algorithm: Arbor


The PFA Clustering module collects a part of the shower hits into clusters, only which can be used in TOF reconstruction.

On the CEPC, the Arbor algorithm are used to perform the clustering process.


- Clustering (Calo hit -> Clusters)
 - Links between hits and hits
 - Bushes (Sub-clusters), clusters
- Cluster identification (charged/neutral particle)
 - Cluster & trajectory matching
 - PID

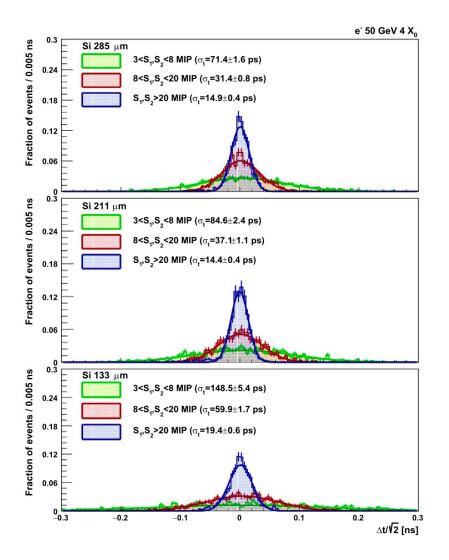
Because of the correlation of the hits time, energy and position, Arbor tends to collect more calorimeter hits with higher energy and faster time.

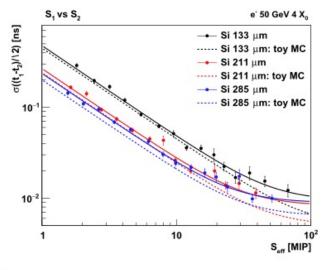


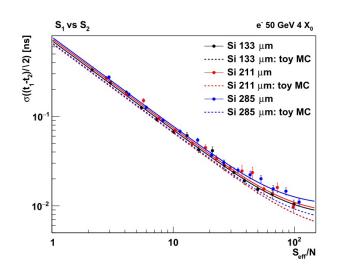
Cluster TOF measurement is depends on the clustering algorithm

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH

Intrinsic time resolution at Hit level




On the timing performance of thin planar silicon sensors



N. Akchurin^{h,*}, V. Ciriolo^g, E. Currás^{a,b}, J. Damgov^h, M. Fernández^b, C. Gallrapp^a, L. Gray^f, A. Junkes^c, M. Mannelli^a, K.H. Martin Kwokⁱ, P. Meridiani^c, M. Moll^a, S. Nourbakhsh^d, S. Pigazzini^g, C. Scharf^c, P. Silva^a, G. Steinbrueck^c, T. Tabarelli de Fatis^g, I. Vila^b

a CERN, CH-1211 Geneva 23, Switzerland

Det 1	Det 2	Fit Function	A [ns×ADC]	C [ns]
Measurement I				
$S_1(133-\mu m)$	$S_2(133-\mu m)$	$\frac{\sigma(t_1-t_2)}{\sqrt{2}} = \frac{A}{\sqrt{2}S_{\text{eff}}} \oplus C$	0.69 ± 0.01	0.010 ± 0.001
$S_1(211-\mu m)$	$S_2(211-\mu m)$	303	0.38 ± 0.01	0.009 ± 0.001
$S_1(285-\mu m)$	$S_2(285-\mu m)$		0.34 ± 0.01	0.010 ± 0.001

A basic TOF reconstruction algorithm

Mimic the intrinsic hit resolution in CEPC software

A basic algorithm

- Select the enough fast hits by delay time
- Take an average as the cluster TOF

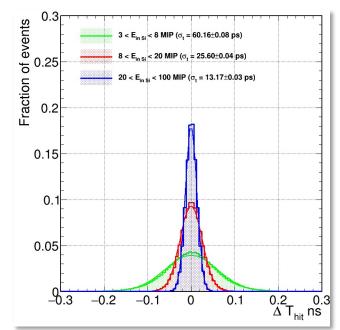
Performance parameters: bias & resolution

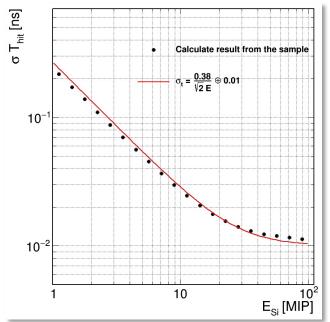
Mimic the detector time response at hit level

- Record the truth level ECAL hits time.
- Smear the hits time with a Gaussian distribution,

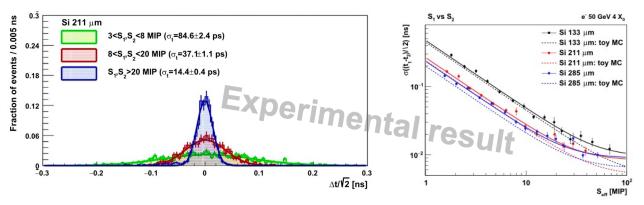
$$T_{hit}^{reco} = Gaus(\mu, \sigma),$$

 $\mu = T_{hit}^{truth},$


$$\sigma = \sqrt{\left(\frac{A}{\sqrt{2}S}\right)^2 + C^2}$$


where,

S = the energy deposition in the Si diodes, converted to the unit of MIP,


A = the noise terms, assumed to be $0.38 \, ns \times MIP$,

C = the constant terms, assumed to be $0.01 \ ns$.

- (a) The bias of smeared hit time in different energy deposition bins.
- (b) The smeared hit time resolution versus energy deposition on Si diodes.

Reconstruct the cluster time

Body content of the basic algorithm:

Define a *Delay time* for every hit,

$$T_{delay}^{reco} = T_{hit}^{reco} - \frac{L_{IP \to hit}}{c},$$

- Sort all of the cluster hits according to the T_{delay}
- Define a hits number fraction, R
- Take the fastest R of the hits, calculate the average time,

$$T_{cluster}^{reco} = \frac{1}{N \cdot R} \sum_{N \cdot R} T_{delay}^{reco} \cdot W$$

where,

 $T_{cluster}^{reco}$ = the reconstructed cluster time,

N = Number of all hits in the cluster,

R = hits number ratio defined previously,

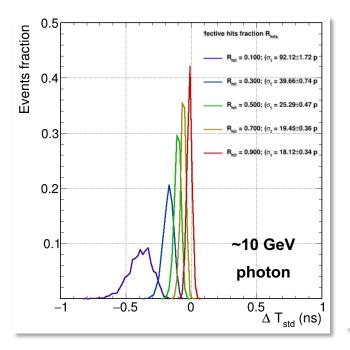
W = weight value, fixed to 1 currently.

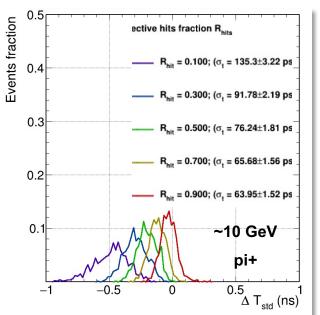
Average value => Reco cluster TOF :)

Performance evaluation

Cluster truth TOF,

$$T_{cluster}^{truth} = \min \left\{ T_{hit}^{truth} - \frac{L_{IP \to hit}}{c} \right\}$$


Time reconstruction bias,


$$\Delta T = Mean \{ T_{cluster}^{reco} - T_{cluster}^{truth} \}$$

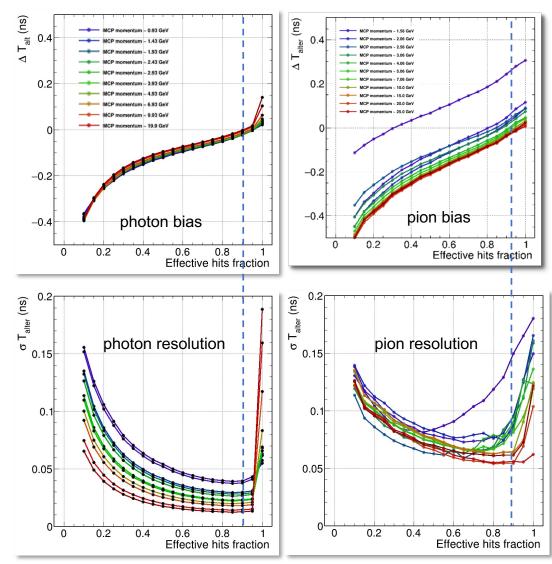
Time resolution,

$$\sigma T = StdDev\{T_{cluster}^{reco} - T_{cluster}^{truth}\}$$

- The performance depends on,
 - hits number fraction, R,
 - incident particle type and momentum,
 - intrinsic time resolution at hit level...

Different between the truth cluster TOF and the reconstructed cluster TOF, in the (left) photon clusters sample, and (right) pi+clusters sample.

The mean value of the above distribution is defined as the bias, and the standard deviation is defined as the time **resolution**.


Performance @ CEPC basline

- Default configuration
- Bias & resolution
- Relationship between intrinsic resolution & cluster TOF resolution

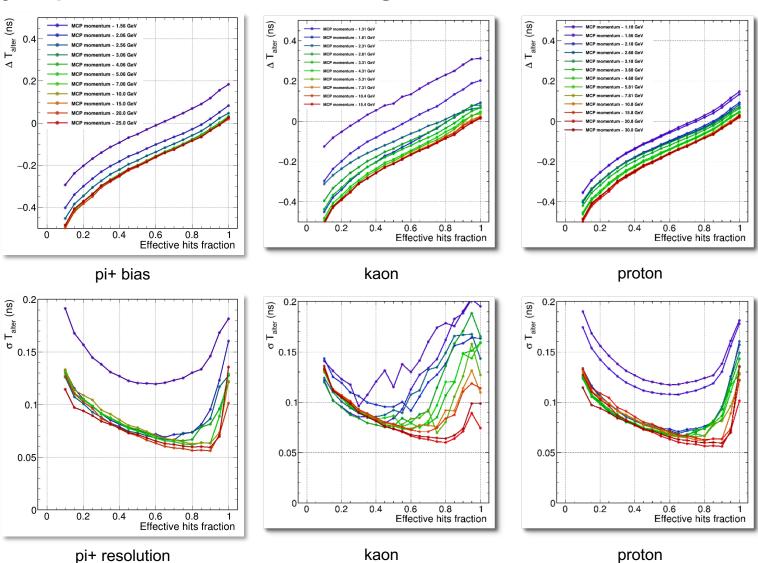
Hits number ratio and energy dependence of cluster timing

Default set up:

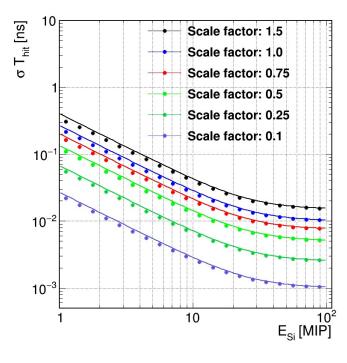
- CEPC baseline geometry
- Clustering algorithm, Arbor
- Experimental intrinsic hit time resolution terms
 - $A = 0.38 \, ns \times MIP$,
 - C = 0.01 ns.
- $e^-, \pi^+, k^+, p^+, \gamma$ with 1 ~ 30 GeV momentum.
- Select the events in which only one cluster exists.

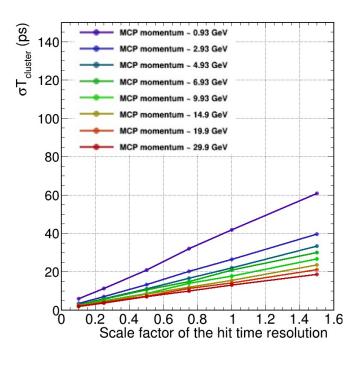
Hits number ratio and energy dependence of cluster timing

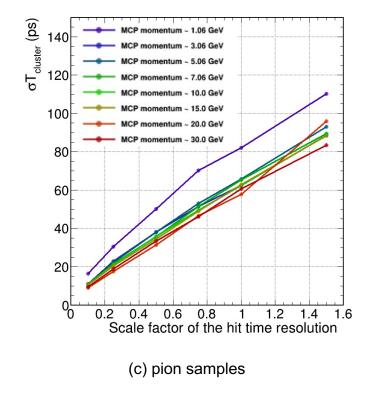
• EM shower:


none-bias ratio: 0.9

resolution: 10 ~ 40 ps


Hadronic shower:


none-bias ratio: 0.9


resolution: ~ 60 ps

What if the detector is improved?

(a) Scaled hit time resolution

(b) Photon samples

Scale the intrinsic time resolution curve with a factor:

$$\sigma = factor \cdot \sqrt{\left(\frac{A}{\sqrt{2}S}\right)^2 + C^2}$$

When scale the intrinsic time resolution with factors from 0.1 to 1.5, the cluster TOF resolution changes with significant linearity, especially for EM showers.

Summary

- Conclusion
 - The dependent factors of cluster TOF reconstruction
 - The performance of the basic algorithm
- Future

Cluster TOF measurement by CEPC calorimeter

- A brief cluster TOF reconstruction algorithm are implemented.
- The performance of a cluster TOF algorithm depends on
 - incident particle type and energy,
 - detector geometry and PFA clustering algorithm,
 - intrinsic hit time resolution, including a noise term A and a constant term C
- At CEPC baseline set up and supported intrinsic hit time resolution (A = 0.38 ns*MIP, C = 0.01 ns), the performance of the mentioned algorithm are evaluated:
 - for EM showers with 1 to 30 GeV, optimized effective fraction R \sim 0.9, corresponding resolution \sim 10 ps,
 - for hadronic showers with 1 to 30 GeV, optimized effective fraction R \sim 0.9, corresponding resolution \sim 60 ps,
- Good linearity: when the intrinsic time resolution scale by a factor from 0.1 to 1.5, the reconstructed TOF resolution scaled by the same factor.

Future

- Optimize the TOF reconstruction algorithm
 - energy weight
 - use HCAL hits information
 -
- Research the dependence of the reconstructed TOF on the calorimeter cell size.
- Evaluate the separation power of **charged particles** at different momentum
- Evaluate the cluster fragments identification ability of the cluster TOF.
-

Thanks for your attention!

November 11, Beijing