Prospects for BC $\rightarrow \tau v @ FCCee$ arXiv:2105.13330

Laboratoire de Physiq

Y.Amhis, C.Helsens, D.Hill, O.Sumensari

CEPC workshop November 11, 2021

Case of flavour physics at an @e+e- machine running at the Z⁰ pole Theoretical challenges for flavor physic

Experimentally attractive

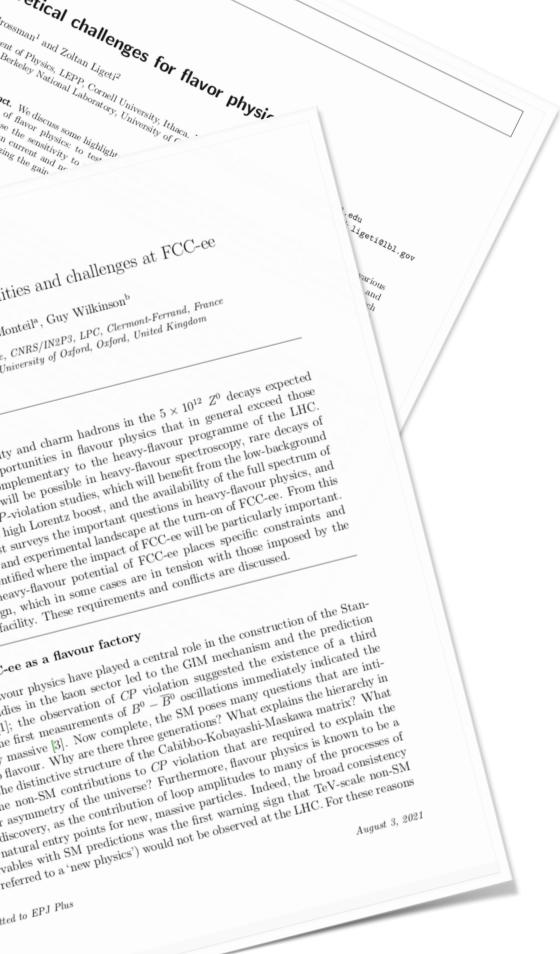
Attribute	$\Upsilon(4S)$	pp	Z^0
All hadron species		\checkmark	✓
High boost		\checkmark	\checkmark
Enormous production cross-section		\checkmark	
Negligible trigger losses	\checkmark		\checkmark
Low backgrounds	\checkmark		1
Initial energy constraint	\checkmark		(\checkmark)

Very generous yields

Particle species	B^0	B^+	B_s^0	Λ_b	B_c^+	$c\overline{c}$	$ au^{-}$
Yield $(\times 10^9)$	310	310	75	65	1.5	600	17

70

2



Heavy-quark opportunities and challenges at FCC-ee

ics goals of the facility. These requ

1. Introduction: FCC-ee as a flavour factory

physics (hence.

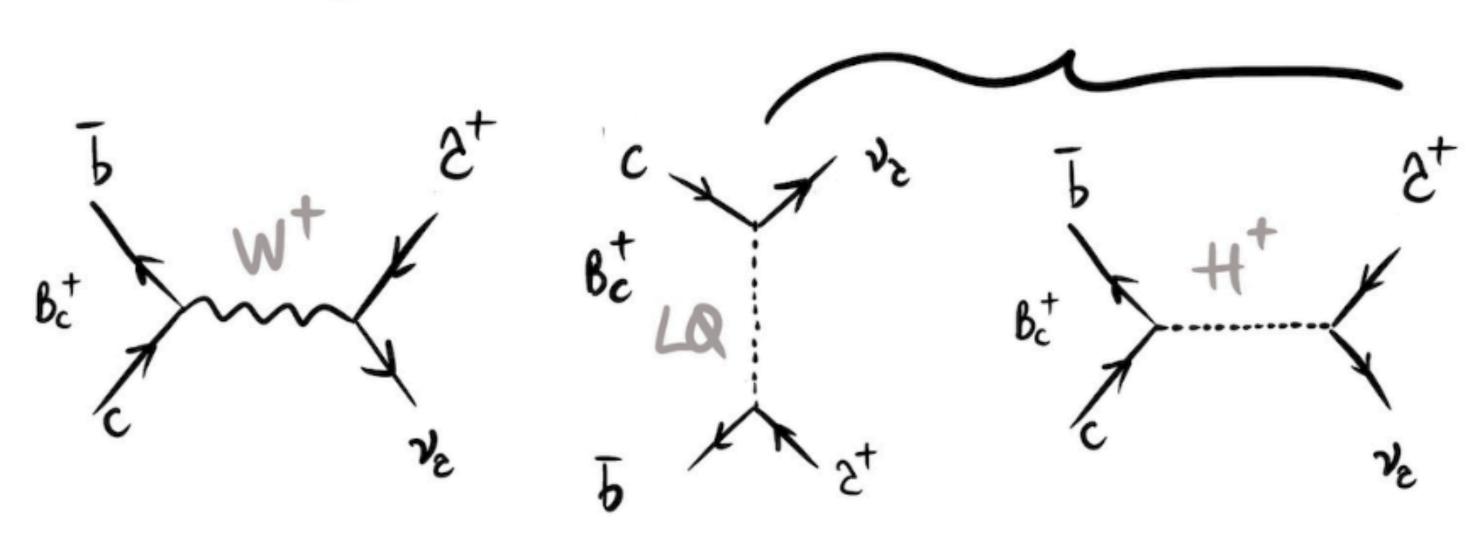
Preprint submitted to EPJ Plus

ables with SM predictions was the first warning sign that T.

Abstract

106.01259v2

Why do we care about this decay? SM



- No B_c production at Belle II.
- A Tera-Z machine is an ideal machine to study this decay.

• Can be used to measure the CKM element $|V_{cb}|$ and highly sensitive to scalar contributions from NP.

• No possible at LHCb due to missing energy-lack of constraints and reconstructed information.

With an EFT at $\mu = m_b$

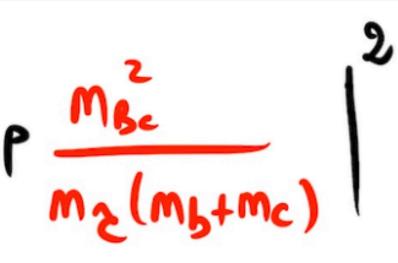
$$\begin{aligned}
\begin{aligned}
&\text{Heff} = \frac{4}{\sqrt{2}} V_{cb} \left[\left(1 + C_V \right) (\overline{c}_L X^V b_L) (\overline{a}_L Y^V b_L) (\overline{a$$

fone uses: $C_{V(A)} = C_{V_R} \pm C_{V_L}$ and $C_{S(P)} = C_{S_R} \pm C_{S_L}$.

 $B(B_{C} \rightarrow 2\nu) = B(B_{C} \rightarrow 2\nu) 1 - C_{A} - C_{p} \frac{m_{B_{C}}^{2}}{m_{B_{C}}^{2}}$

 $e_{L}(\psi v_{L})$ EL YH VL) VL) VL)]+h.c

C_i are the Wilson coefficients, null in the SM using this convention.

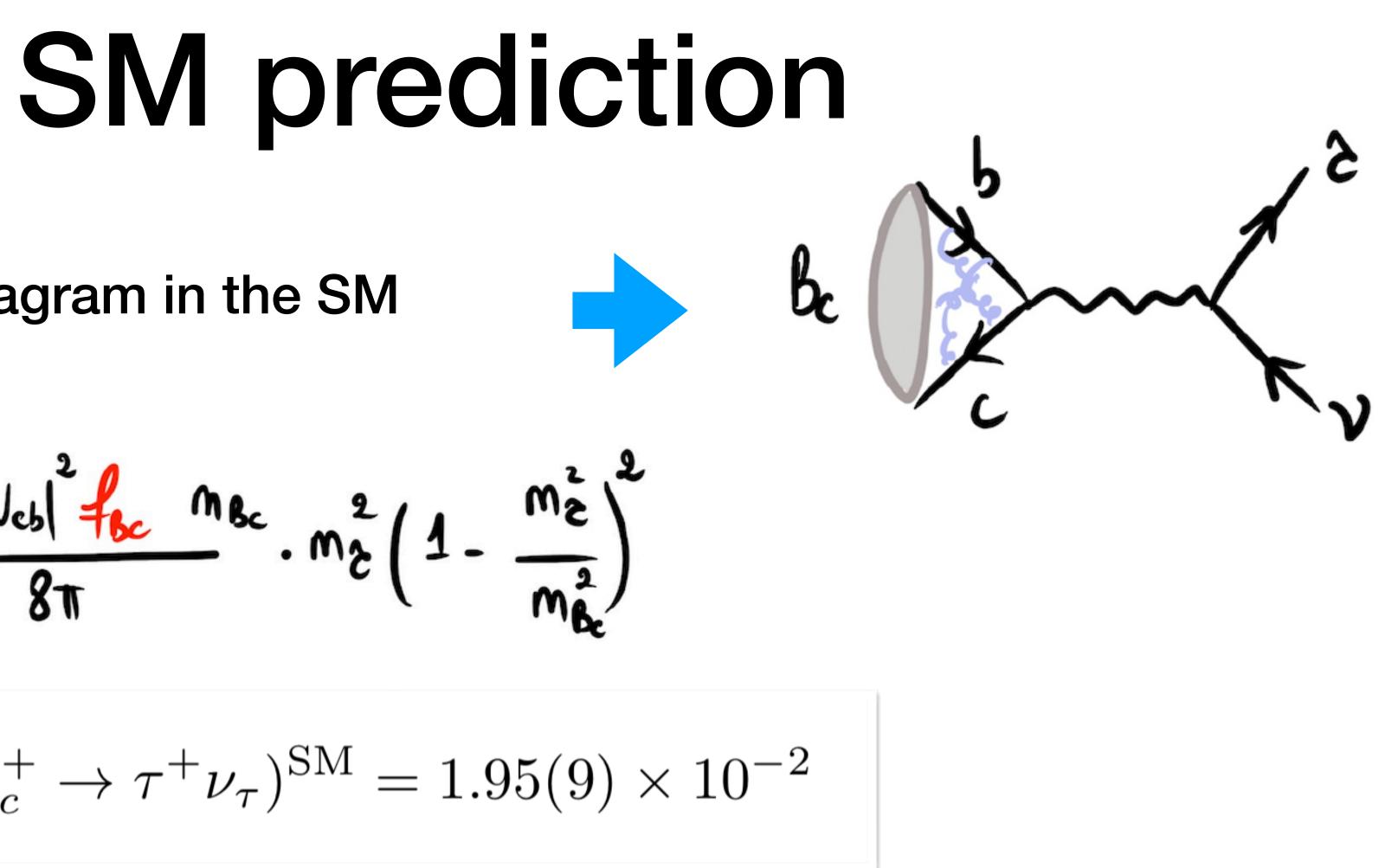


C_P lifts the SM helicity suppression sizeable enhancement !

Tree-level Feynman diagram in the SM

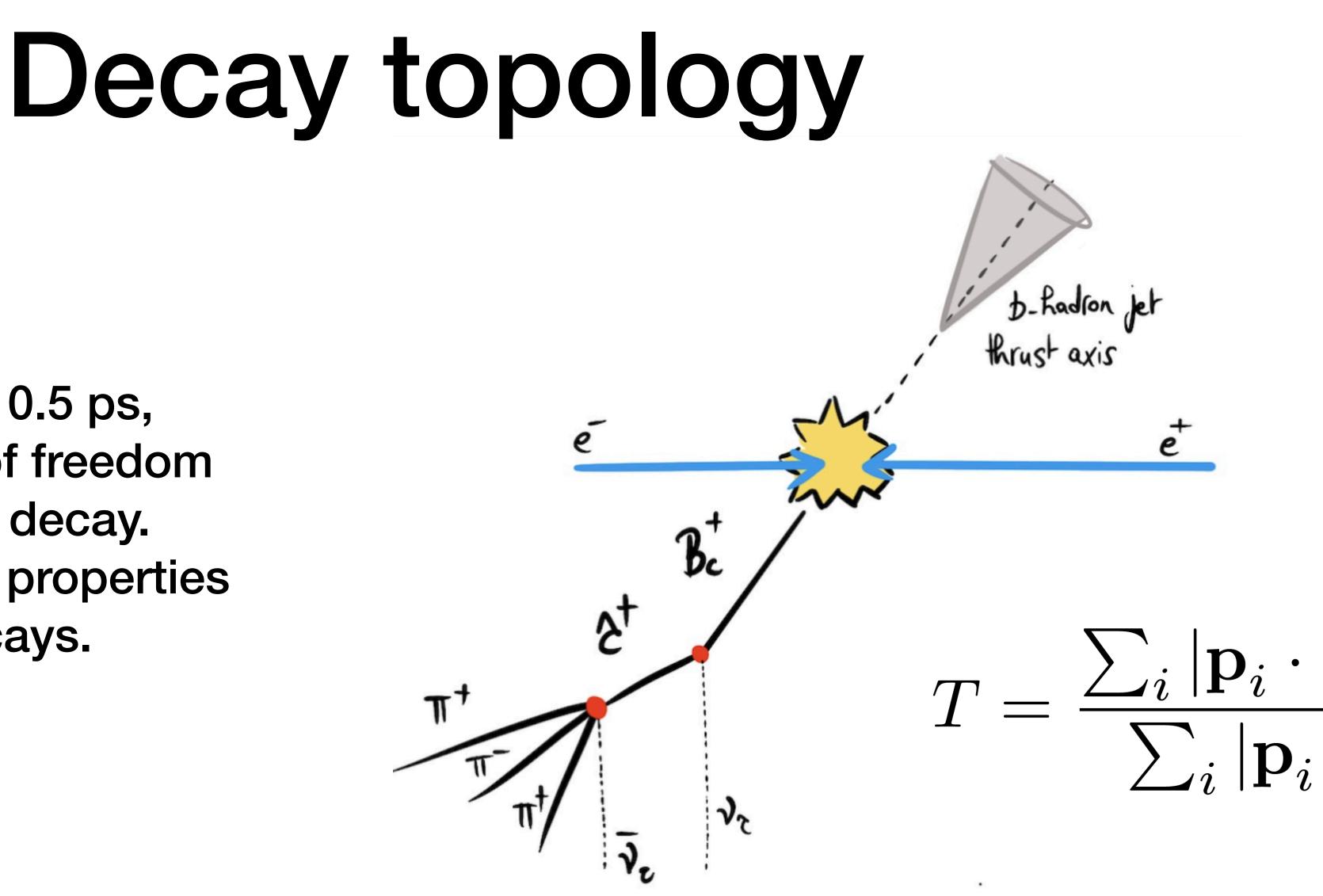
$$B(B_{c} \rightarrow 2\nu)^{\text{SM}} = 2 B_{c} G_{f}^{2} \frac{|V_{cb}|^{2} f_{bc}}{8\pi} M_{bc} M_{bc}^{2} \dots M_{bc}^{2}$$

Decay constant from HPQCD and V_{cb} exclusive HFLAV. Looking forward to improvements of the decay constant computation with LQCD techniques.



 B_c lifetime very short ~ 0.5 ps, *i.e* too many degrees of freedom to fully reconstruct the decay. Explore the thrust axis properties and the hadronic T decays.

Note : arXiv:2007.08234 explored leptonic τ decays.

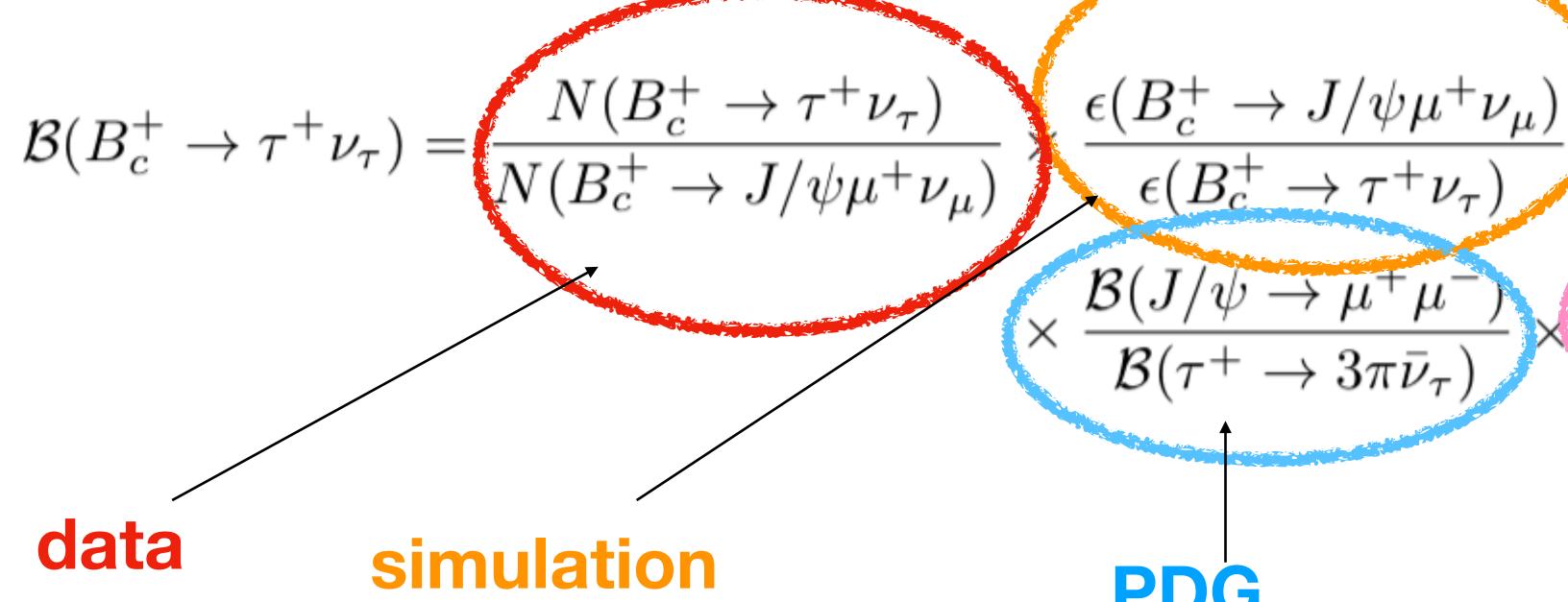


6

Master formula $\mathcal{B}(B_c^+ \to \tau^+ \nu_\tau) = \frac{N(B_c^+ \to \tau^+ \nu_\tau)}{N(B_c^+ \to J/\psi\mu^+\nu_\mu)}$

How do we get to the final branching ratio?

$$\times \frac{\epsilon (B_c^+ \to J/\psi \mu^+ \nu_\mu)}{\epsilon (B_c^+ \to \tau^+ \nu_\tau)}$$
$$\times \frac{\mathcal{B}(J/\psi \to \mu^+ \mu^-)}{\mathcal{B}(\tau^+ \to 3\pi \bar{\nu}_\tau)} \times \mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_\mu) ,$$



Running at the Z pole.

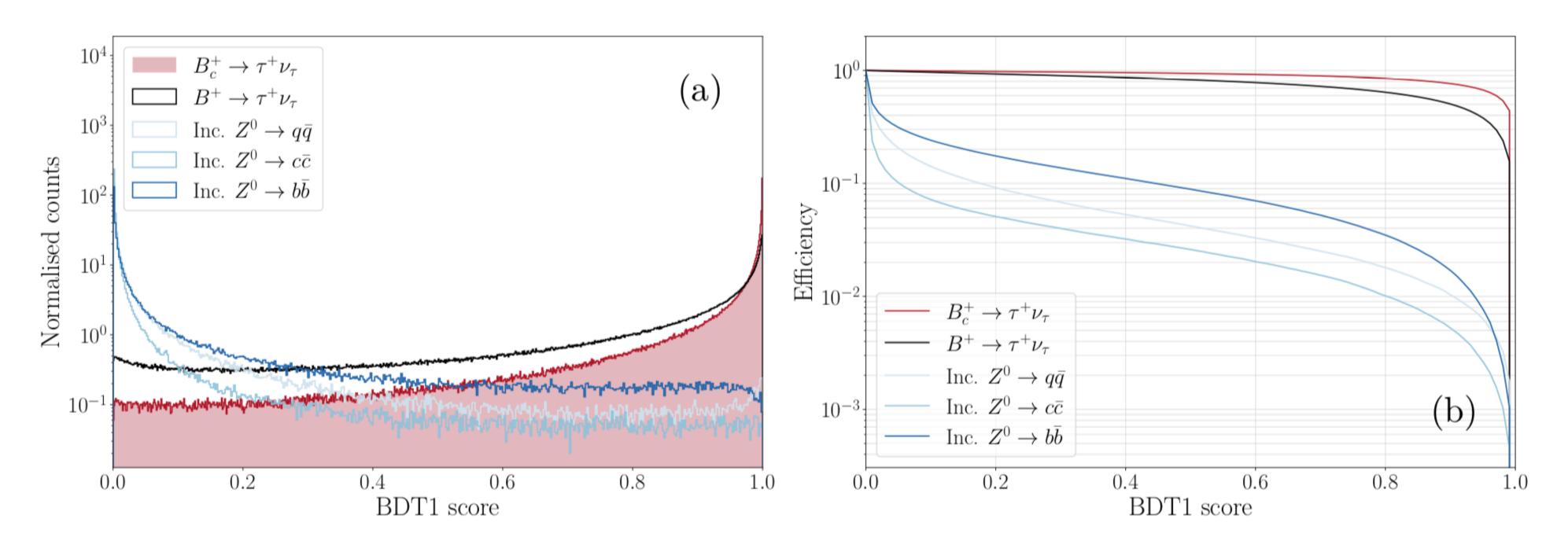
Detector configuration using IDEA concept. Simulation based on DELPHES with HEP-FCC Needs : very good vertex seeding and particle identification. Use a two staged BDT.

Analysis strategy Avoid using B_c hadronisation fraction $\times \mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_\mu) \,,$ $\rightarrow 3\pi \bar{\nu}_{\tau}$ **PDG**



First stage BDT

Signal : B_c decays are generated with hadronic τ final states using EvtGen (SLN model for the Bc and TAUHADNU for the τ) Backgrounds: Large sample of inclusive *Z* to *bb*, *cc*, *qq* generated with Pythia. and a collection of exclusive *b*-hadron decays to open charm.



Focuses on event topology

BDT = XGBOOST

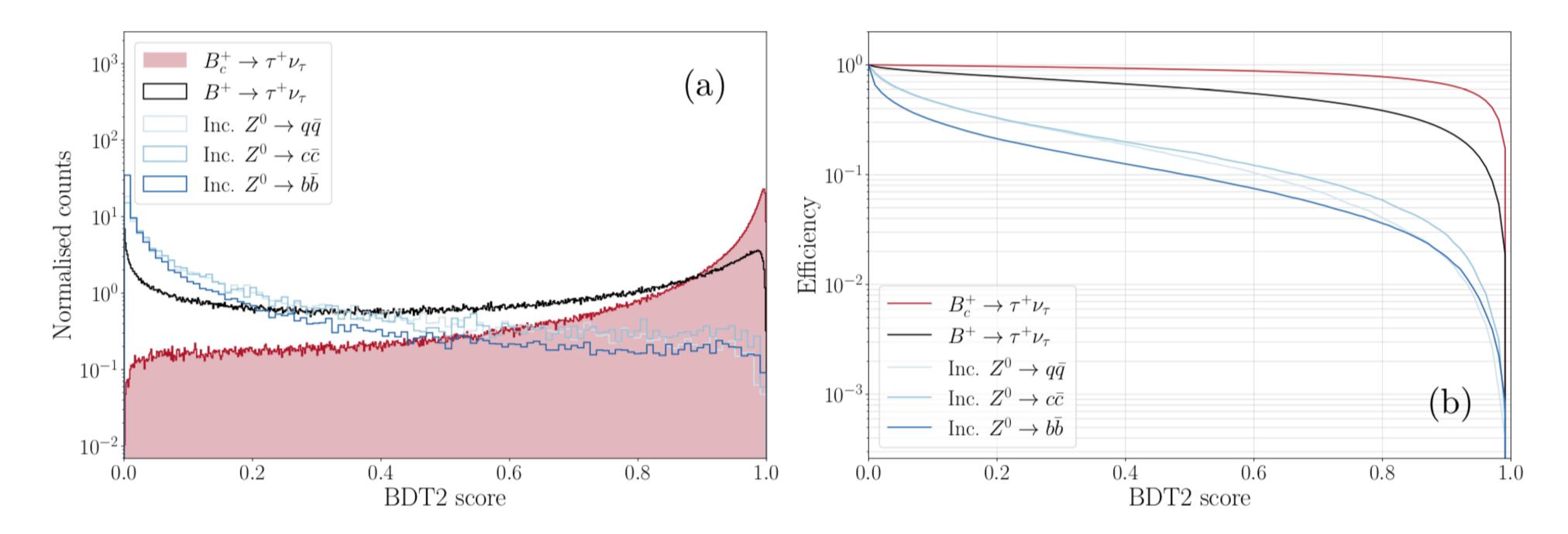
Input variables for the first BDT

- Total reconstructed energy in each hemisphere;
- Total charged and neutral reconstructed energies in each hemisphere:
- Charged and neutral particle multiplicities in each hemisphere;
- Number of tracks in the reconstructed PV;
- Number of reconstructed 3π candidates in the event;
- Number of reconstructed vertices in each hemisphere;

Explore event level information

Minimum, maximum, and average radial distance of all decay vertices from the PV.

Similar input samples as the first stageBDT and requiring 0.6 on the first one.



Focuses on the 3π properties and other reconstructed decay vertices in the event.

Second stage BDT

Input variables for the second BDT

- 3π candidate mass, and masses of the two $\pi^+\pi^-$ combinations;
- Number of 3π candidates in the event;
- Radial distance of the 3π candidate from the PV;
- Vertex χ^2 of the 3π candidate;
- longitudinal) of the 3π candidate;
 - Angle between the 3π candidate and the thrust axis;
 - reconstructed decay vertices in the event;
 - Mass of the PV;
 - candidate.

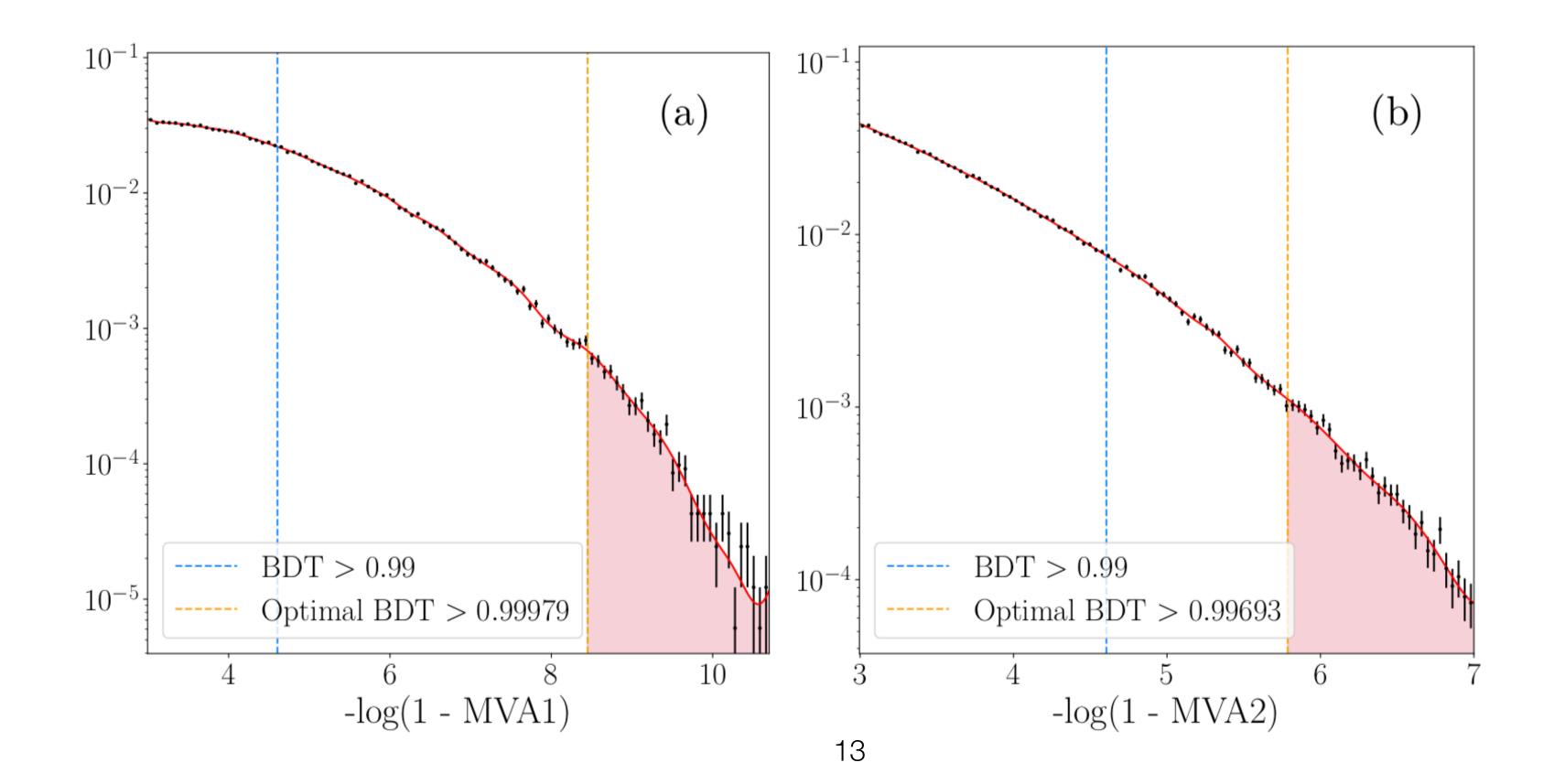
• Momentum magnitude, momentum components, and impact parameter (transverse and

• Minimum, maximum, and average impact parameter (longitudinal and transverse) of all other

• Nominal B energy, defined as the Z mass minus all reconstructed energy apart from the 3π

Optimisation

$$N(B_c^+ \to \tau^+ \nu_\tau) = N_Z \times \mathcal{B}(Z \to b\bar{b}) \times 2$$

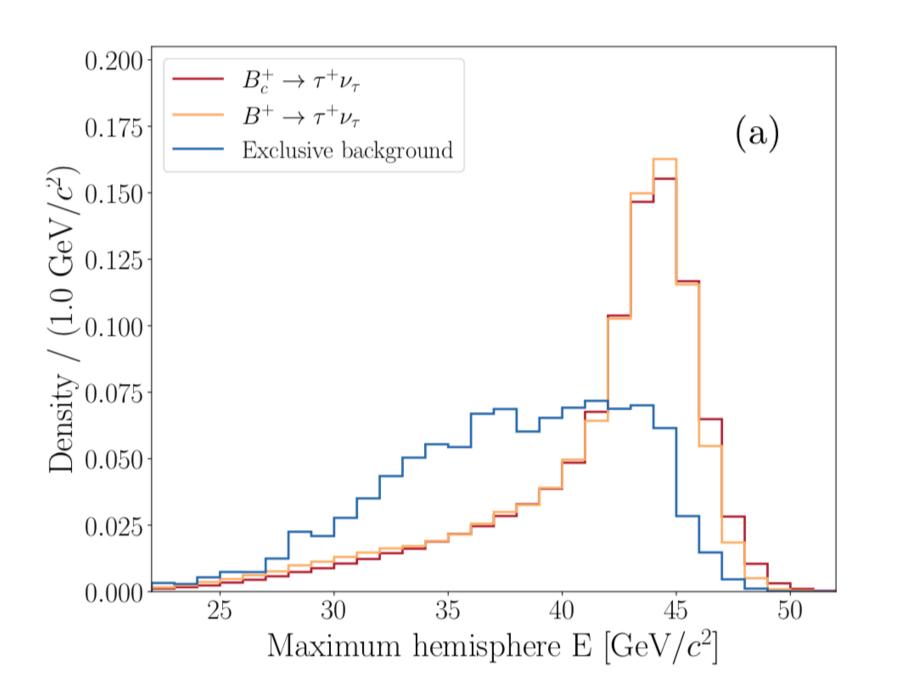


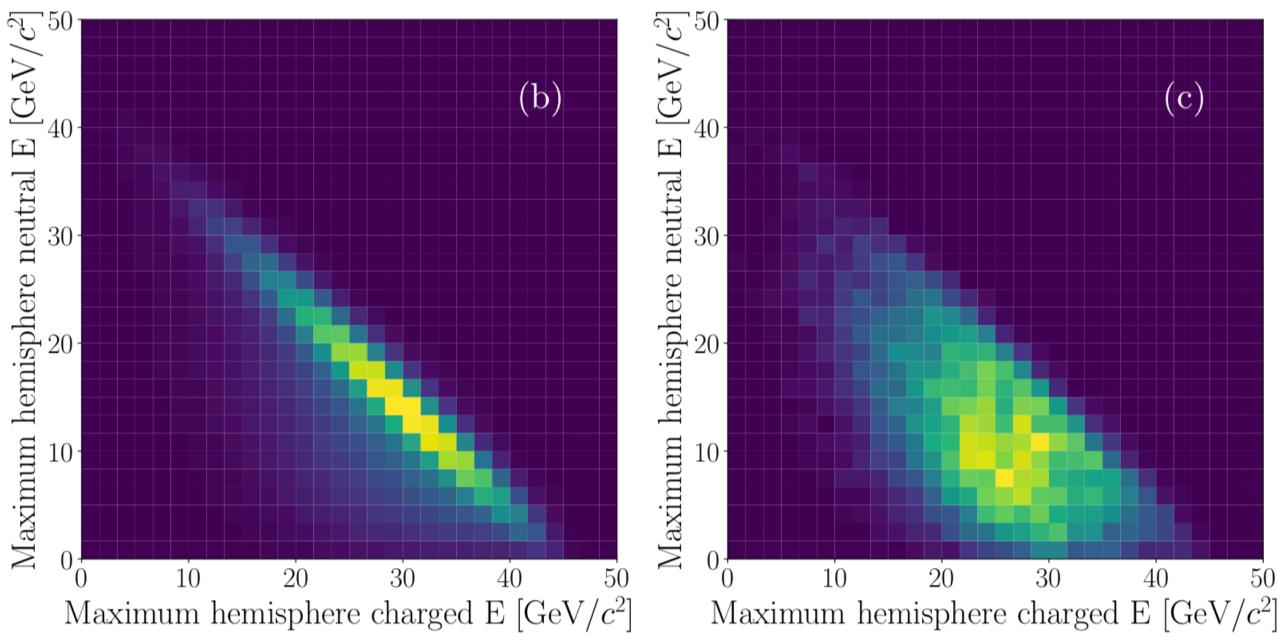
Perform a two dimensional optimisation on the BDT cuts (2500 points in total) maximise S/(S+B)

 $\times f(B_c^+) \times \mathcal{B}(B_c^+ \to \tau^+ \nu_\tau) \times \mathcal{B}(\tau^+ \to \pi^+ \pi^- \bar{\nu}_\tau) \times \epsilon,$

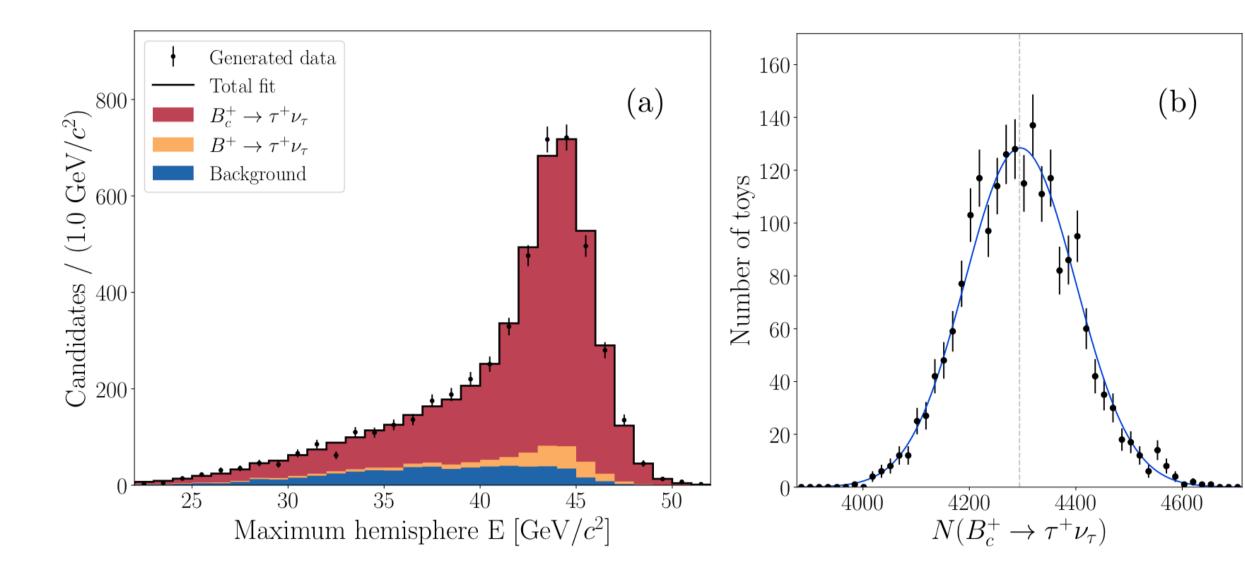
Towards the fit

Compare signal and background distributions after tight BDT cut and identify most discriminating ones

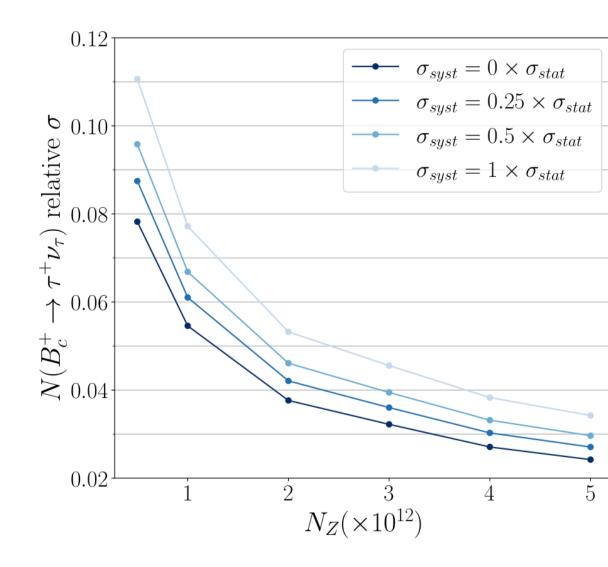


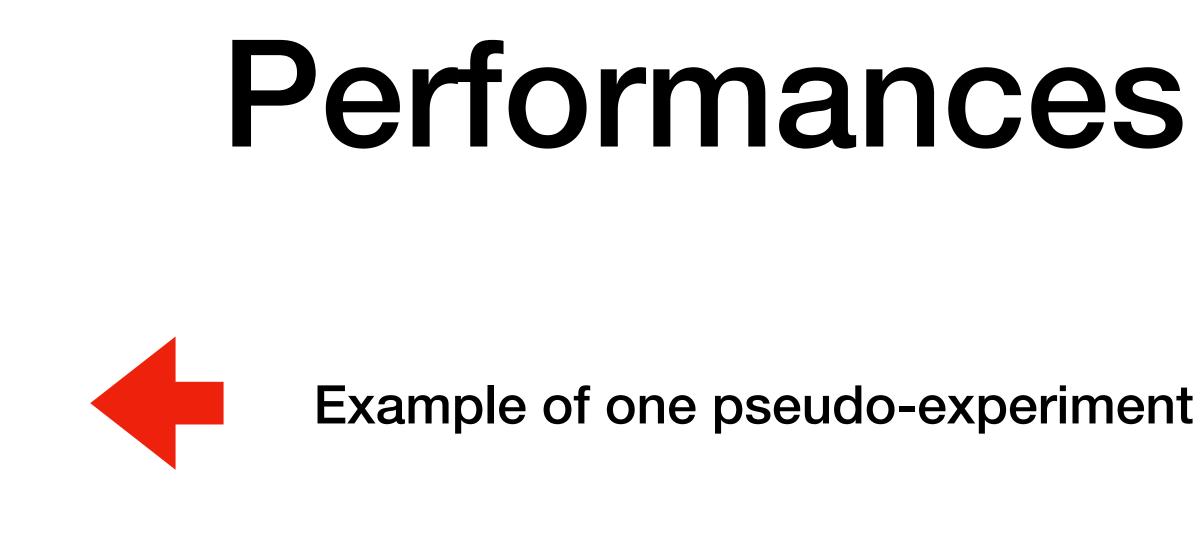


Use these histograms to build the PDF for the template fits.



with : $N_Z = 5 \times 10^{12}$ 2000 toys



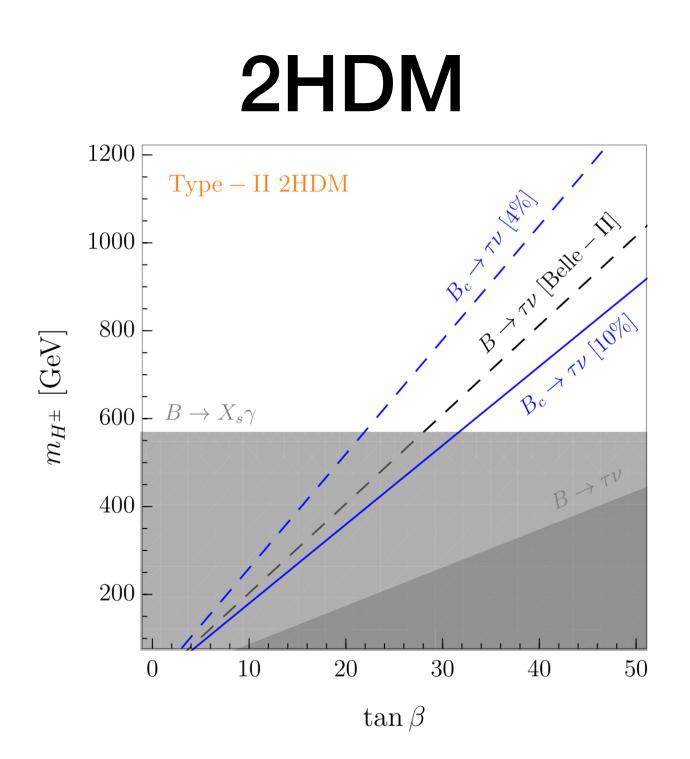


Evolution of the sensitivity

$N_Z(\times 10^{12})$	$N(B_c^+ \to \tau^+ \nu_{\tau})$	Relative σ (%)
0.5	430 ± 33	7.8
1	858 ± 46	5.5
2	1717 ± 64	3.8
3	2578 ± 83	3.2
4	3436 ± 93	2.7
5	4295 ± 103	2.4

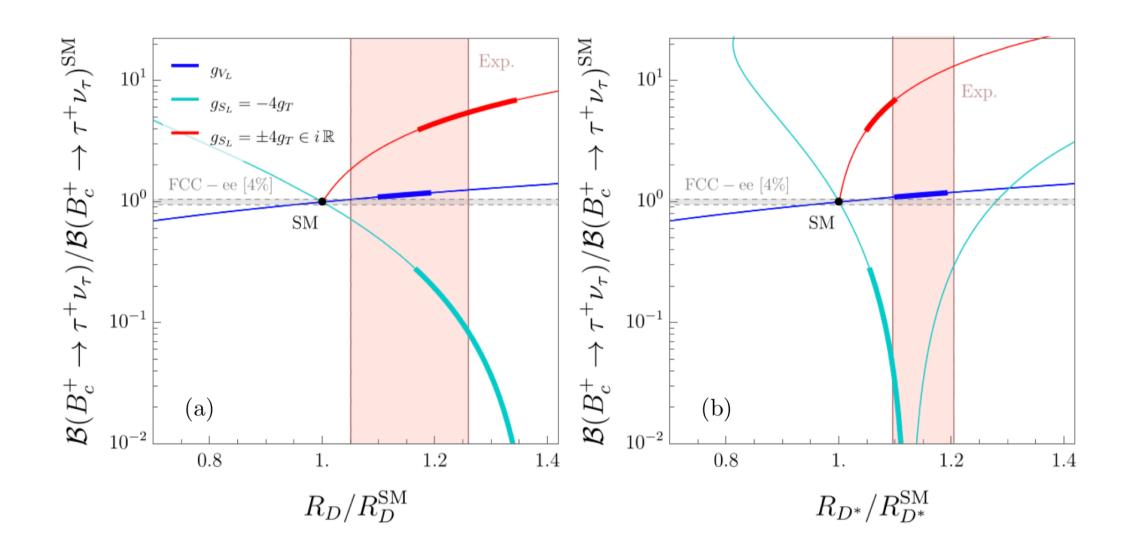
Phenomenology

Models considered taking into account the current experimental landscape from flavour physics.



Determination of the range of Wilson coefficients assuming real values are provided. Unique opportunities are offered here for this decay.

Leptoquarks



Conclusion

In summary, this work demonstrates why FCC-ee is the most well-suited environment for a measurement of the branching fraction of the $B_c^+ \rightarrow \tau^+ \nu_{\tau}$ decay, and represents the first FCC-ee analysis to use common software tools from EDM4HEP through to final analysis.

Acknowledgements

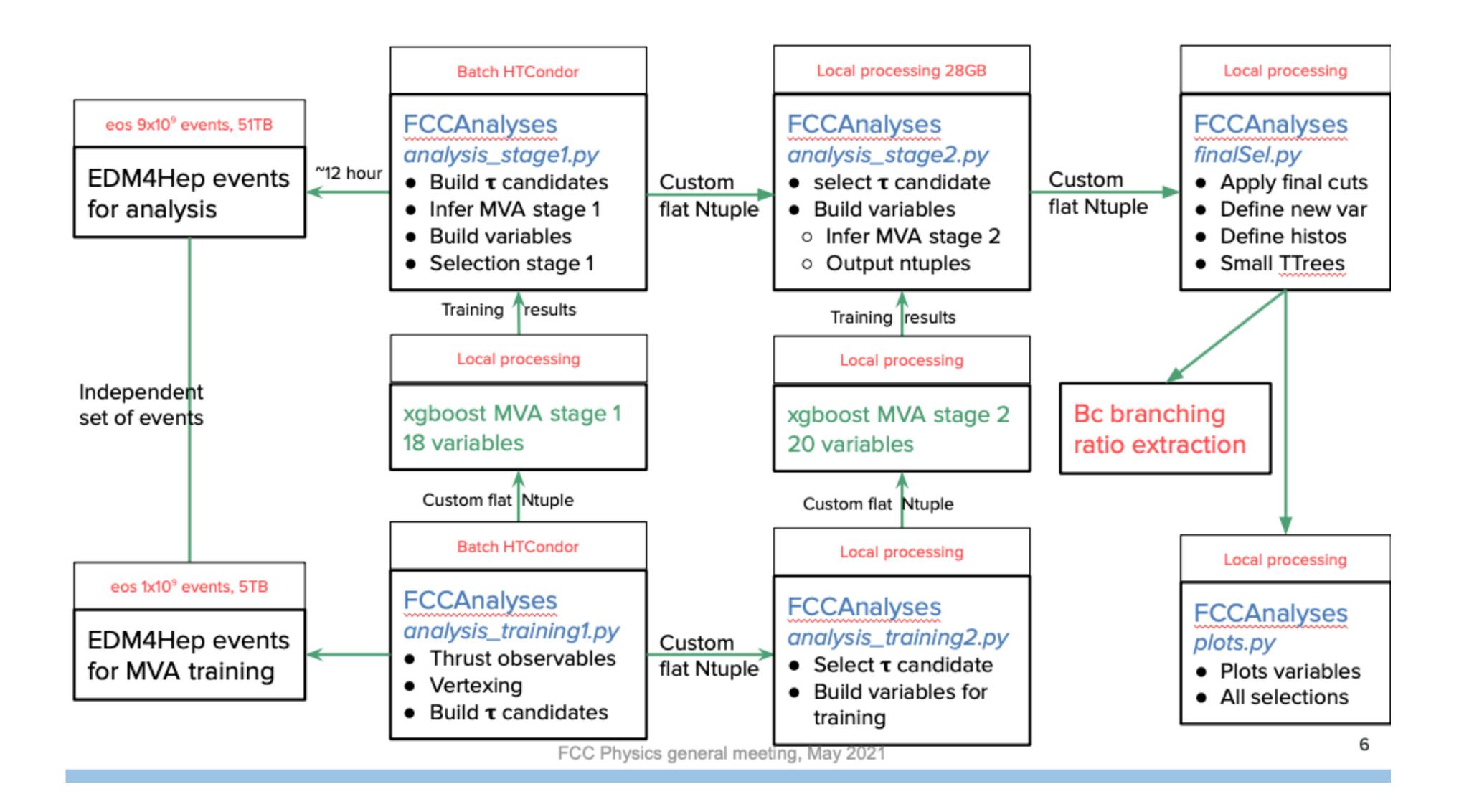
The authors would like to thank D. Bečirević, M. John, S. Monteil, P. Robbe, and M.-H. Schune for the useful discussions and their input. This project has received support from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement N° 860881-HIDDeN.

That's it !

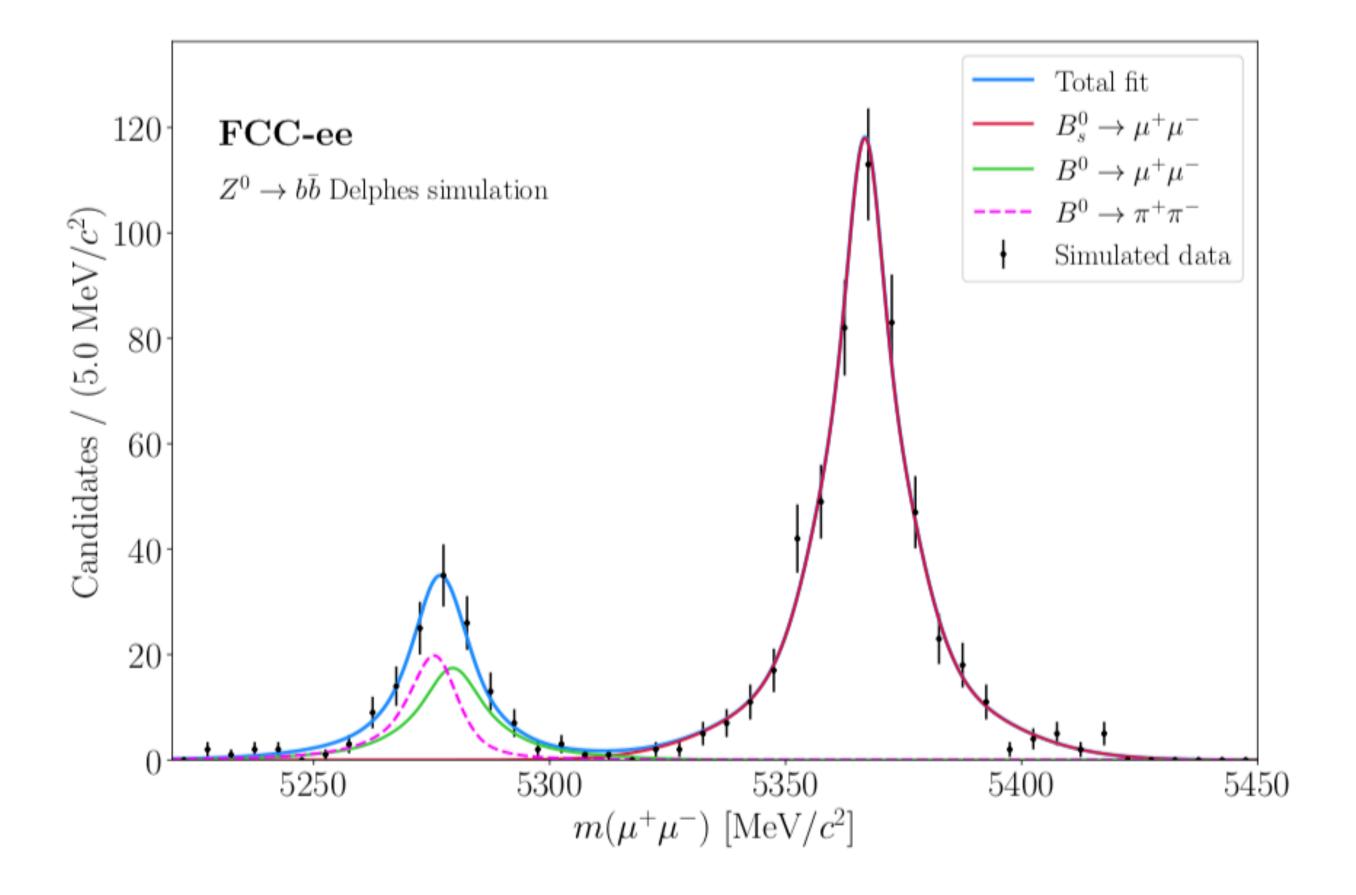
Model	$R_{K^{(*)}}$
$S_1 = (3, 1)_{-1/3}$	*
$R_2 = (3, 2)_{7/6}$	*
$\widetilde{R}_2 = (3, 2)_{1/6}$	*
$S_3 = (3,3)_{-1/3}$	~
$U_1 = (3, 1)_{2/3}$	~
$U_3 = (3, 3)_{2/3}$	

Table 1: Summary of LQ models which can accommodate $R_{K^{(*)}}$, $R_{D^{(*)}}$ and both. Table based work from 1808.08179..

See talk at FCC general meeting May 2021



Example of a very rare decay



Can be achieved with excellent mass resolution

Decay mode	N(expected)	N(generated)	Expected / Generated	Final ϵ
$B^+ \to \bar{D}^0 \tau^+ \nu_{\tau}$	5.01×10^9	2×10^8	25.0	1.46×10^{-9}
$B^+ \to \bar{D}^{*0} \tau^+ \nu_{\tau}$	1.22×10^{10}	2×10^8	61.1	1.1×10^{-9}
$B^+ \to \bar{D}^0 3\pi$	3.64×10^9	1.9×10^8	19.2	1.56×10^{-9}
$B^+ \to \bar{D}^{*0} 3\pi$	$6.7 imes 10^9$	2×10^8	33.5	1.04×10^{-9}
$B^+ \to \bar{D}^0 D_s^+$	5.85×10^9	2×10^8	29.3	2.52×10^{-10}
$B^+ \to \bar{D}^{*0} D_s^+$	4.94×10^9	1.75×10^8	28.2	2.72×10^{-10}
$B^+ \to \bar{D}^{*0} D_s^{*+}$	1.11×10^{10}	2×10^8	55.6	2.42×10^{-10}
$B^0 \to D^- \tau^+ \nu_{\tau}$	7.02×10^9	2×10^8	35.1	2.69×10^{-9}
$B^0 \rightarrow D^{*-} \tau^+ \nu_{\tau}$	1.02×10^{10}	2×10^8	51.0	1.25×10^{-9}
$B^0 \rightarrow D^- 3\pi$	3.9×10^9	2×10^8	19.5	3.4×10^{-9}
$B^0 \rightarrow D^{*-} 3\pi$	4.69×10^9	2×10^8	23.4	9.84×10^{-10}
$B^0 \to D^- D_s^+$	4.68×10^9	2×10^8	23.4	3.23×10^{-10}
$B^0 \to D^{*-}D_s^+$	5.2×10^9	2×10^8	26.0	2.32×10^{-10}
$B^0 \to D^{*-} D_s^{*+}$	1.15×10^{10}	2×10^8	57.5	2.35×10^{-10}
$B_s^0 \to D_s^- \tau^+ \nu_{\tau}$	3.53×10^9	2×10^8	17.6	3.71×10^{-9}
$B_s^0 \to D_s^{*-} \tau^+ \nu_\tau$	2.35×10^9	2×10^8	11.8	2.27×10^{-9}
$B_s^0 \to D_s^- 3\pi$	8.85×10^8	2×10^8	4.4	5.53×10^{-9}
$B_s^0 \rightarrow D_s^{*-} 3\pi$	1.05×10^9	2×10^8	5.2	3.38×10^{-9}
$B_s^0 \to D_s^- D_s^+$	6.39×10^8	2×10^8	3.2	4.09×10^{-10}
$B_s^0 \to D_s^{*-} D_s^+$	2.02×10^9	2×10^8	10.1	3.17×10^{-10}
$B_s^0 \to D_s^{*-} D_s^{*+}$	2.09×10^9	2×10^8	10.5	2.56×10^{-10}
$\Lambda_b^0 \to \Lambda_c^- \tau^+ \nu_{\tau}$	1.83×10^9	2×10^8	9.1	1.36×10^{-9}
$\Lambda_b^0 \to \Lambda_c^{*-} \tau^+ \nu_\tau$	1.83×10^9	2×10^8	9.1	9.44×10^{-10}
$\Lambda_b^0 \to \Lambda_c^- 3\pi$	4.31×10^8	2×10^8	2.2	5.58×10^{-9}
$\Lambda_b^0 \to \Lambda_c^{*-} 3\pi$	4.31×10^8	2×10^8	2.2	9.21×10^{-10}
$\Lambda_b^0 \to \Lambda_c^- D_s^+$	6.15×10^8	2×10^8	3.1	3.46×10^{-10}
$\Lambda_b^0 \to \Lambda_c^{*-} D_s^+$	6.15×10^8	2×10^8	3.1	2.72×10^{-10}
$\Lambda_b^0 \to \Lambda_c^{*-} {D_s^{*+}}$	6.15×10^8	2×10^8	3.1	2.5×10^{-10}

$N_Z(\times 10^{12})$	Relative σ (
0.5	[0.078, 0.087]
1	[0.055, 0.061]
2	[0.038, 0.042]
3	[0.032, 0.036]
4	[0.027, 0.03,
5	[0.024, 0.027]

systematic uncertainty on the signal yield are shown.

$N_Z(\times 10^{12})$	Relative σ (
0.5	[0.081, 0.09,
1	[0.058, 0.064]
2	[0.042, 0.046]
3	[0.037, 0.04,
4	[0.032, 0.035]
5	[0.03, 0.032,

uncertainty on the signal yield are shown.

 $(\sigma_{syst}^N = [0, 0.25, 0.5, 1] \times \sigma_{stat}^N)$ [37, 0.096, 0.111][1, 0.067, 0.077][2, 0.046, 0.053][6, 0.039, 0.046][0.033, 0.038][27, 0.03, 0.034]

Table 3: Estimated relative precision on $N(B_c^+ \to \tau^+ \nu_{\tau})$ as a function of N_Z , where four different levels of

 $(\sigma_{syst}^N = [0, 0.25, 0.5, 1] \times \sigma_{stat}^N)$ 0, 0.098, 0.113[4, 0.07, 0.08][6, 0.05, 0.056]a, 0.043, 0.049[5, 0.037, 0.042], 0.034, 0.038]

Table 4: Estimated relative precision on R_c as a function of N_Z , where four different levels of systematic

$N_Z(\times 10^{12})$	Relative
0.5	[0.115, 0.
1	[0.1, 0.10]
2	[0.092, 0.
3	[0.089, 0.
4	[0.088, 0.
5	[0.087, 0.

systematic uncertainty on the signal yield are shown.

 $\sigma \ (\sigma_{syst}^N = [0, 0.25, 0.5, 1] \times \sigma_{stat}^N)$.122, 0.128, 0.139[04, 0.107, 0.114].093, 0.095, 0.099.091, 0.092, 0.095] .089, 0.09, 0.092] .088, 0.088, 0.09

Table 5: Estimated relative precision on $\mathcal{B}(B_c^+ \to \tau^+ \nu_{\tau})$ as a function of N_Z , where four different levels of