cylindrical space.

Machine Learning **Event Reconstructio**

	Convolution	l	Max-Pool	
et Image				

Benjamin Nachman

Lawrence Berkeley National Laboratory

bpnachman.com bpnachman@lbl.gov

CEPC Workshop November 11, 2021

This is a very broad topic and there is no way I can do it justice in ~30 min.

This is a very broad topic and there is no way I can do it justice in ~30 min.

I will use the recent <u>ML4Jets workshop</u> as a roadmap for this talk.

This is a very broad topic and there is no way I can do it justice in ~30 min.

I will use the recent <u>ML4Jets workshop</u> as a roadmap for this talk.

For a comprehensive review (anyone can contribute!) see: https://iml-wg.github.io/HEPML-LivingReview/

The annual <u>ML4Jets conference</u> a couple of months ago had 100 talks in three days (!)

N.B. most plots are links!

ML4Jets2021

Datasets

ML4Jets2021

I won't cover everything - just giving you a taste!

...my apologies in advance for not covering your / favorite topic.

A NN is **equivariant** if it **commutes** with the symmetry group and a NN is **invariant** if the output is **unchanged** under symmetries of the inputs

A NN is **equivariant** if it **commutes** with the symmetry group and a NN is **invariant** if the output is **unchanged** under symmetries of the inputs

Equivariant example

Learn features that transform under rotations in the same way as the inputs - then feed these into further layers e.g. train a NN that takes as input all constituents inside a jet and outputs the true jet 3-vector.

see e.g. E. Catalina's ML4Jets talk.

A NN is **equivariant** if it **commutes** with the symmetry group and a NN is **invariant** if the output is **unchanged** under symmetries of the inputs

Equivariant example

Learn features that transform under rotations in the same way as the inputs - then feed these into further layers

Invariant example

Event/jet constituents are permutation invariant use Deep Sets, Graph Networks, Transformers, Attention, ...

A NN is **equivariant** if it **commutes** with the symmetry group and a NN is **invariant** if the output is **unchanged** under symmetries of the inputs

$$f(x_1,\ldots,x_n)=F\left(\sum_{i=1}^N\Phi(x_i)\right)$$

for permutation invariance

see 1810.05165

Invariant example

Event/jet constituents are permutation invariant use **Deep Sets**, Graph Networks, Transformers, Attention, ...

Significant interest in ML-based unfolding for high-(or even variable-)dimensional, unbinned measurements

based unfolding for high-(or even

Significant interest in ML-based unfolding for high-(or even variable-)dimensional, unbinned measurements

Generative model-based 2006.06685

Classifier-based 1911.09107

Significant interest in ML-based unfolding for high-(or even variable-)dimensional, unbinned measurements

Fact: Neutral networks learn to approximate the likelihood ratio

or something monotonically related to it in a known way

Solution: train a neural network to distinguish the two datasets!

This turns the problem of **density** estimation (hard) into a problem of classification (easy)

(this is a form of likelihood-free inference)

Classifier-based 1911.09107

Measurements

First application to collider data!

16

A hot topic in this area is anomaly detection

i.e. using unsupervised/weakly-supervised/semi-supervised learning to reduce signal/background model dependence

A hot topic in this area is anomaly detection

i.e. using unsupervised/weakly-supervised/semi-supervised learning to reduce signal/background model dependence

New methods are saturating bounds in some regimes

Context: <u>LHC Olympics</u> Features: jet substructure Methods:

> CATHODE: density + classifier CWoLa: classifier

ANODE: density + density

(sideband model + signal region model)

A hot topic in this area is anomaly detection

i.e. using unsupervised/weakly-supervised/semi-supervised learning to reduce signal/background model dependence

New methods are saturating bounds in some regimes

Key questions remain: how to do model selection for unsupervised methods? How to best estimate the background? What about the nonresonant case?

Classification

Table 2. Comparison between the performance reported for differen the top tagging dataset. The uncertainty quoted corresponds to th

trainings with different random weight initialization. If the uncertainty

Acc

AUC

 $1/\epsilon_B \ (\epsilon_S = 0.5$

			1902	variation is negligi	ible comp .ce.	pared to the ex	pected value.	. Bold results
Top tagging landscape ———					0 [1 0]	Acc	AUC	$1/\epsilon_B \ (\epsilon_S = 0)$
	AUC	Acc	1/ single	$\begin{array}{c} \begin{array}{c} Resident for a field of the second strength of the sec$	$\left \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	#Param	0.9837 Saa Hi	ilin'e
CNN [16] ResNeXt [30]	$ 0.981 \\ 0.984 $	$\left \begin{array}{c} 0.930 \\ 0.936 \end{array}\right $	$914{\pm}14$ $1122{\pm}47$	995±15ticleNot 1270±28ticleNot	51£i18 [<mark>10</mark> 6 f‡8][6] 610k0. 1.46M b.	talk @	this
TopoDNN [18] Multi-body N-subjettiness 6 [24]	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 0.916 \\ 0.922 \end{array}$	295 ± 5 792 ± 18	382-1EDI-net78 798-1⊊DI-net808	90 <u>1</u> 8 ⊗i∰n <u>3</u> C	59R.) [20]57R.9500	Works	hop!
Multi-body N-subjettiness 8 [24] TreeNiN [43] P-CNN ParticleNat [47]	0.981 0.982 0.980	$\begin{array}{c} 0.929 \\ 0.933 \\ 0.930 \\ 0.028 \end{array}$	867 ± 15 1025 ± 11 732 ± 24 1208 ± 46	918 \pm 200T 926 1202 \pm 23T 1188 845 \pm 13 834	6 ± 18 8 ± 24 4 ± 14 2 ± 41	58k0.931 34k0.939 348k 408l-	0.9813 0.9849	$230{\pm}10$ $354{\pm}12$
LBN [19] LoLa [22] Energy Flow Polynomials [21] Energy Flow Network [23] Particle Flow Network [23]	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{r} 1238 \pm 40 \\ $	have transverse n 1412 ± 45 159 have transverse n 1859 ± 67 the 966 tion. For the transverse 1.6M/200k/200k expected particle 729 ± 13 726 particle 18 set 1652	3 ± 41 momentu 6 ± 20 3 ± 11 events 6 ± 11 $1 3 \pm 19$	$ \frac{495 \text{K}}{495 \text{K}} $ $ \frac{495 \text{K}}{127 \text{K}} $ $ \frac{127 \text{K}}{127 \text{K}} $ $ \frac{127 \text{K}}{18} $ $ (\text{electron, much start features } 82 \text{K} $ $ \frac{62 \text{K}}{82 \text{K}} $	550] GeV a valuation, t Each particl on, photon, is used. The	nd rapidity he recomment e contains the or charged/n ese features as
GoaT	0.985	0.939	1368 ± 140	used in [16, 17]. 7 1549=	$\frac{\text{The AU}}{\pm 208}$	C and ba ckgro 35k	ound rejecti	on power are
ParticleNet-Lite	0.984	0.937	1262±49	Table 3. Compari	rison bety	ween 26 kperfor	man erefor	
ParticleNet	0.986	0.940	1615±93	the quark and glue nine trainings with	ion datas 1 differen	set. The uncer 366k t random weigh	tainty quotec it initializatio	corresponds
ParticleNeXt	0.987	0.942	1923±48	variation is negligither highest performance	ible comp .ce.	parec 560 khe ex	pected Value	Bord result

State-of-the-art classification performed by the self-and of the self-and of

This is often set up as a regression task.

Innovation on many fronts, including the combination of various sources of information, mitigation of pileup, ...

This is often set up as a regression task.

Innovation on many fronts, including the combination of various sources of information, mitigation of pileup, ...

Ex: Prior-independent jet calibrations

This is often set up as a regression task.

Innovation on many fronts, including the combination of various sources of information, mitigation of pileup, ...

Ex: Prior-independent jet calibrations

Ex: Graph-based Pileup Mitigation

A hot topic in this area is fast calorimeter simulation

Simulation

A hot topic in this area is fast calorimeter simulation

10¹ 10^{1} 10⁰ 10⁰ 10⁰ 10^{-1} 10^{-1} 10^{-1} 10^{-2} 10^{-3} 10^{-2} 10^{-2} 10^{-4} 10^{-1} 10^{-1} 10^{-3} 10^{-3} 10^{0} 10^{1} 10^{-} E_0/\hat{E}_{tot} E_1/\hat{E}_{tot} E_2/\hat{E}_{tot} π^+ CaloGAN π^+ GEANT π^+ CaloFlow

State-of-the-art with GANs and Normalizing Flows are reaching precision!

2106.05285

Simulation

10

10

10

10

GEORG-AUGUST-UNIVERSITÄT Göttingen

Now with a full integration into a collider simulation!

(AF3 uses a GAN for intermediate energies)

see yesterday's simulation session for more...

26

Datasets

Real-time Anomaly Detection

see also https://iml.web

Dark Machines + more presented at ML4Jets and beyond!

c-datasets

γ

27

Discovering / categorizing latent structure in data

...this could be symmetries or multi-class components, etc.

Discovering / categorizing latent structure in data

...this could be symmetries or multi-class components, etc.

Interpretability and Uncertainties

ties associated with neural

Key questions: what are uncertainties associated with neural networks? How to make networks use uncertainty information (uncertainty-aware)? How to make networks optimal with respect to downstream analysis (Inference-aware)?

Interpretability and Uncertainties

Key questions: what are uncertainties associated with neural networks? How to make networks use uncertainty information (uncertainty-aware)? How to make networks optimal with respect to downstream analysis (Inference-aware)?

Bayesian generative models, parameterized uncertainty networks, ...

Interpretability and Uncertainties

Key questions: what are uncertainties associated with neural networks? How to make networks use uncertainty information (uncertainty-aware)? How to make networks optimal with respect to downstream analysis (Inference-aware)?

32

Bayesian generative models, parameterized uncertainty networks, ...

Data analysis in NP/HEP

33

Data analysis in NP/HEP + ML Theory of everything Nature Parameter Fast estimation / simulation / unfolding phase space Online **Physics simulators** Experiment processing & quality control **Detector-level observables Detector-level observables** Data curation Pattern recogn Pattern recognition calibration **Classification to** clustering enhance tracking sensitivity noise mitigation particle identification "signal" versus "background"

Conclusions and outlook

Deep learning has a great potential to **enhance**, **accelerate**, and **empower** analyses with jets

35

Due to the limited time, I was only able to cover a small selection of new ideas and results

