
Machine Learning for Collider 
Event Reconstruction & Analysis

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.
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Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.
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Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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The annual ML4Jets conference a couple of 
months ago had 100 talks in three days (!)

N.B. most plots are links!

https://indico.cern.ch/event/980214/timetable/#20210706
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A hot topic in this area is equivariance / invariance

A NN is equivariant if it commutes with the 
symmetry group and a NN is invariant if the output is 

unchanged under symmetries of the inputs

Equivariant example
Learn features that 

transform under rotations 
in the same way as the 
inputs - then feed these 

into further layers

e.g. train a NN that 
takes as input all 

constituents inside a 
jet and outputs the 

true jet 3-vector.  
see e.g. E. Catalina’s ML4Jets talk.

https://indico.cern.ch/event/980214/contributions/4413403/attachments/2276448/3867383/ML4Jets_Equivariance_Ema_Smith_2021.pdf
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A hot topic in this area is equivariance / invariance

A NN is equivariant if it commutes with the 
symmetry group and a NN is invariant if the output is 

unchanged under symmetries of the inputs

Invariant example
Event/jet constituents are 

permutation invariant - 
use Deep Sets, Graph 

Networks, Transformers, 
Attention, …

e.g. Deep Sets:

f(x1, . . . , xn) = F (∑N
i=1 Φ(xi))

for permutation invariance

see 1810.05165
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Figure 2: Structure of INN. The {xd,p} denote detector-level and parton-level events, {rd,p}
are random numbers to match the phase space dimensionality. A tilde indicates the INN
generation.

3 Unfolding detector e↵ects

We introduce the conditional INN in two steps, starting with the non-conditional, standard
setup. The construction of the INN we use in our analysis combines two goals [11]:

1. the mapping from input to output is invertible and the Jacobians for both directions are
tractable;

2. both directions can be evaluated e�ciently. This second property goes beyond some other
implementations of normalizing flow [38,40].

While the final aim is not actually to evaluate our INN in both directions, we will see that
these networks can be extremely useful to invert a Markov process like detector smearing.
Their bi-directional training makes them especially stable.

In Sec. 3.3 we will show how the conditional INN retains a proper statistical notion of the
inversion to parton level phase space. This avoids a major weakness of standard unfolding
methods, namely that they only work on large enough event samples condensed to one-
dimensional or two-dimensional kinematic distributions. This could be a missing transverse
energy distribution in mono-jet searches or the rapidities and transverse momenta in top
pair production. To avoid systematics or biases in the full phase space coverage required
by the matrix element method, the unfolding needs to construct probability distributions in
parton-level phase space, including small numbers of events in tails of kinematic distributions.

3.1 Naive INN

While it is clear from our discussion in Ref. [48] that a standard INN will not serve our
purpose, we still describe it in some detail before we extend it to a conditional network.

7
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Solution: train a neural network to 
distinguish the two datasets!

Fact: Neutral networks learn to 
approximate the likelihood ratio

This turns the problem of density 
estimation (hard) into a problem of 

classification (easy)

or something monotonically 
related to it in a known way

(this is a form of likelihood-free inference)
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(very recent!)

First application to collider data!

https://www-h1.desy.de/h1/www/publications/htmlsplit/H1prelim-21-031.long.html
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A hot topic in this area is anomaly detection

i.e. using unsupervised/weakly-supervised/semi-supervised 
learning to reduce signal/background model dependence

Method comparison

• Significance improvement:
⇣
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B

⌘

post�cut

/
⇣
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B

⌘

pre�cut

• CATHODE significantly outperforms both ANODE and CWoLa

• Even approaching the supervised performance at lower signal e�ciency

• ”Idealized Anomaly Detection” works like CATHODE but replacing the sampled data by bkg-only

SR data
• Supervised line is an upper bound given by a dedicated search

• Same classifier as used in CWoLa, but training on sig/bkg labels

4

New methods are saturating 
bounds in some regimes

Context: LHC Olympics

Features: jet substructure

Methods: 
CATHODE: density + classifier

CWoLa: classifier
ANODE: density + density

(sideband model + signal region model)

https://indico.cern.ch/event/980214/contributions/4413500/attachments/2276834/3868069/210706_ML4Jets_Manuel_Sommerhalder.pdf
https://lhco2020.github.io/homepage/


19BSM

A hot topic in this area is anomaly detection
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• CATHODE significantly outperforms both ANODE and CWoLa

• Even approaching the supervised performance at lower signal e�ciency

• ”Idealized Anomaly Detection” works like CATHODE but replacing the sampled data by bkg-only

SR data
• Supervised line is an upper bound given by a dedicated search

• Same classifier as used in CWoLa, but training on sig/bkg labels

4

New methods are saturating 
bounds in some regimes

Key questions remain: 
how to do model selection 

for unsupervised 
methods?  How to best 

estimate the background?  
What about the non-

resonant case?

https://indico.cern.ch/event/980214/contributions/4413500/attachments/2276834/3868069/210706_ML4Jets_Manuel_Sommerhalder.pdf
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ParticleNet-Lite

ParticleNet

ParticleNeXt

SciPost Physics Submission

AUC Acc 1/✏B (✏S = 0.3) #Param
single mean median

CNN [16] 0.981 0.930 914±14 995±15 975±18 610k
ResNeXt [30] 0.984 0.936 1122±47 1270±28 1286±31 1.46M

TopoDNN [18] 0.972 0.916 295±5 382± 5 378 ± 8 59k
Multi-body N -subjettiness 6 [24] 0.979 0.922 792±18 798±12 808±13 57k
Multi-body N -subjettiness 8 [24] 0.981 0.929 867±15 918±20 926±18 58k
TreeNiN [43] 0.982 0.933 1025±11 1202±23 1188±24 34k
P-CNN 0.980 0.930 732±24 845±13 834±14 348k
ParticleNet [47] 0.985 0.938 1298±46 1412±45 1393±41 498k

LBN [19] 0.981 0.931 836±17 859±67 966±20 705k
LoLa [22] 0.980 0.929 722±17 768±11 765±11 127k
Energy Flow Polynomials [21] 0.980 0.932 384 1k
Energy Flow Network [23] 0.979 0.927 633±31 729±13 726±11 82k
Particle Flow Network [23] 0.982 0.932 891±18 1063±21 1052±29 82k

GoaT 0.985 0.939 1368±140 1549±208 35k

Table 1: Single-number performance metrics for all algorithms evaluated on the test sample.
We quote the area under the ROC curve (AUC), the accuracy, and the background rejection
at a signal e�ciency of 30%. For the background rejection we also show the mean and median
from an ensemble tagger setup. The number of trainable parameters of the model is given as
well. Performance metrics for the GoaT meta-tagger are based on a subset of events.

competitive with the technically much more advanced ResNeXt50 and ParticleNet networks.
This suggests that even for a straightforward task like top tagging in fat jets we can develop
competitive and e�cient physics-specific tools. While their performance does not quite match
the state of the art standard networks, it is close enough to test both approaches on key
requirements in particle physics, like treatment of uncertainties, stability with respect to
detector e↵ects, etc.

The obvious question in any deep-learning analysis is if the tagger captures all relevant
information. At this point we have checked that including full or partial information on the
event-level kinematics of the fat jets in the event sample has no visible impact on our quoted
performance metrics. We can then test how correlated the classifier output of the di↵erent
taggers are. We show the pair-wise correlations for a subset of classifier outputs in Fig. 6, with
the correlation matrix given in Tab. 2. As expected from strong classifier performances, most
jets are clustered in the bottom left and top right corners, corresponding to identification as
background and signal, respectively. The largest spread is observed for correlations with the
EFP. Even the two strongest individual classifier outputs with relatively little physics input
— ResNeXt50 and ParticleNet — are not perfectly correlated.

Given that we find the outputs of the di↵erent algorithms not to be fully correlated, we
can investigate whether their combination into a meta-tagger might improve performance.
Note that this GoaT (Greatest of all Taggers) meta-tagger should not be viewed as a poten-
tial analysis tool, but rather as a benchmark of how much unused information is available
in correlations that could be captured by a future approach. It is implemented as a fully
connected network with 5 layers containing 100-100-100-20-2 nodes. All activation functions
are ReLu, apart from the final layer where we use SoftMax. Training is performed with the

15

0.984 0.937 1262±49 26k

0.986 0.940 1615±93 366k

0.987 0.942 1923±48 560k

Table 2. Comparison between the performance reported for different classification algorithms on
the top tagging dataset. The uncertainty quoted corresponds to the standard deviation of nine
trainings with different random weight initialization. If the uncertainty is not quoted then the
variation is negligible compared to the expected value. Bold results represent the algorithm with
highest performance.

Acc AUC 1/✏B (✏S = 0.5) 1/✏B (✏S = 0.3)
ResNeXt-50 [16] 0.936 0.9837 302±5 1147±58
P-CNN [16] 0.930 0.9803 201±4 759±24
PFN [32] - 0.9819 247±3 888±17
ParticleNet-Lite [16] 0.937 0.9844 325±5 1262±49
ParticleNet [16] 0.940 0.9858 397±7 1615±93

JEDI-net [20] 0.9263 0.9786 - 590.4
JEDI-net with

P
O [20] 0.9300 0.9807 - 774.6

SPCT 0.931 0.9813 230±10 851±70
PCT 0.939 0.9849 354±12 1287±41

have transverse momentum pT 2 [500, 550] GeV and rapidity |y| < 1.7 for the reconstruc-
tion. For the training, testing and evaluation, the recommended splitting is used with
1.6M/200k/200k events respectively. Each particle contains the four momentum and the
expected particles type (electron, muon, photon, or charged/neutral hadrons). For each
particle, a set of 13 kinematic features is used. These features are chosen to match the ones
used in [16, 17]. The AUC and background rejection power are listed in Tab. 3.

Table 3. Comparison between the performance reported for different classification algorithms on
the quark and gluon dataset. The uncertainty quoted corresponds to the standard deviation of
nine trainings with different random weight initialization. If the uncertainty is not quoted then the
variation is negligible compared to the expected value. Bold results represent the algorithm with
highest performance.

Acc AUC 1/✏B (✏S = 0.5) 1/✏B (✏S = 0.3)
ResNeXt-50 [16] 0.821 0.9060 30.9 80.8
P-CNN [16] 0.827 0.9002 34.7 91.0
PFN [32] - 0.9005 34.7±0.4 -
ParticleNet-Lite [16] 0.835 0.9079 37.1 94.5
ParticleNet [16] 0.840 0.9116 39.8±0.2 98.6±1.3
ABCNet [17] 0.840 0.9126 42.6±0.4 118.4±1.5

SPCT 0.824 0.899 34.4±0.4 100.3±1.5
PCT 0.841 0.9140 43.3±0.7 117.5±1.4

6 Computational cost

Besides the algorithm performance, the computational cost is also an important figure of
merit. To compare the amount of computational resources required to evaluate each model,

– 7 –

ParticleNeXt 0.841 0.9129 41±0.1 105±1.0

Top tagging landscape

Quark/gluon tagging

G. Kasieczka et al.  
[1902.09914]

V. Mikuni, F. Canelli 
[2102.05073]

1902.09914 + H. Qu

State-of-the-art classification performance continues to 
improve!  New tricks like self-attention, etc.

Graph-
based

See Huilin’s 
talk @ this 
workshop!

https://indico.cern.ch/event/980214/contributions/4413544/attachments/2277334/3868991/ParticleNeXt_ML4Jets2021_H_Qu.pdf
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various sources of information, mitigation of pileup, …

5LNDE�*DPEKLU

3UHOLPLQDU\

&RQFOXVLRQ
:H�KDYH�SUHVHQWHG�D�IUDPHZRUN�XVHIXO�IRU��DOO�DW�WKH�VDPH�
WLPH���

Ɣ (VWLPDWLQJ�PXWXDO�LQIRUPDWLRQ��D�PHDVXUH�RI�WKH�
QRQOLQHDU�LQWHUGHSHQGHQFH�EHWZHHQ�UDQGRP�
YDULDEOHV

Ɣ 3HUIRUPLQJ�IUHTXHQWLVW�PD[LPXP�OLNHOLKRRG�
LQIHUHQFH�IRU�<�JLYHQ�;�

Ɣ (VWLPDWLQJ�WKH�XQFHUWDLQW\�RQ�<�IRU�VDLG�LQIHUHQFH
Ɣ 0RUHRYHU��WKH�*DXVVLDQ�$QVDW]�PDNHV�WKH�DERYH�

PDQLIHVW

*LYHQ�QRWKLQJ�EXW�H[DPSOH��[�\��SDLUV��LQ�D�VLQJOH�WUDLQLQJ��
$OO�RI�WKHVH�WDVNV�DUH�XVHIXO�LQ�KLJK�HQHUJ\�SK\VLFV��VXFK�
DV�IRU�MHW�HQHUJ\�FDOLEUDWLRQ�

��

Ex: Prior-independent jet calibrations

https://indico.cern.ch/event/980214/contributions/4413598/attachments/2277263/3868866/Calibration%20and%20Correlation%20ML4Jets.pdf
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This is often set up as a regression task.

Innovation on many fronts, including the combination of 
various sources of information, mitigation of pileup, …$%&QHW DU;LY�����������

! /DUJH LPSURYHPHQW LQ PDVV UHVROXWLRQ IRU 4&' GLMHW HYHQWV
! 7UDLQLQJ RQ< Q38 >= �� VKRZV SHUIRUPDQFH DW KLJKHU 38 FRPSDUDEOH WR GHGLFDWHG

WUDLQLQJ
! 1HWZRUN REYLRXVO\ OHDUQV WR DEVWUDFW KRZ 38 ORRNV OLNH

%HQHGLNW 0DLHU �&(51�&06� 0/�-HWV ʍ -XO\ �� ���� ��

3UHOLPLQDU\

:H�KDYH�SUHVHQWHG�D�IUDPHZRUN�XVHIXO�IRU��DOO�DW�WKH�VDPH�

��D�PHDVXUH�RI�WKH�

�IRU�VDLG�LQIHUHQFH
0RUHRYHU��WKH�*DXVVLDQ�$QVDW]�PDNHV�WKH�DERYH�

SDLUV��LQ�D�VLQJOH�WUDLQLQJ��

Ex: Prior-independent jet calibrations Ex: Graph-based Pileup Mitigation

https://indico.cern.ch/event/980214/contributions/4413603/attachments/2277773/3869789/ML4Jets.pdf
https://indico.cern.ch/event/980214/contributions/4413598/attachments/2277263/3868866/Calibration%20and%20Correlation%20ML4Jets.pdf
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A hot topic in this area is fast calorimeter simulation

III: Flow I histograms: ⇡+

Claudius Krause (Rutgers) CaloFlow (arXiv:2106.05285) July 7, 2021 15 / 17

2106.05285

State-of-the-art with GANs and Normalizing Flows are reaching precision!

https://indico.cern.ch/event/980214/contributions/4413577/attachments/2277792/3869819/CaloFlow.C.Krause.pdf


State-of-the-art with GANs and Normalizing Flows are reaching precision!

26Simulation

A hot topic in this area is fast calorimeter simulation

III: Flow I histograms: ⇡+

Claudius Krause (Rutgers) CaloFlow (arXiv:2106.05285) July 7, 2021 15 / 172106.05285

Now with a full integration into a collider simulation!

22

Performance: Jet substructure

7th July 2021

Substructure variables with UFO 1.0 jets

Z′ (4 TeV) → t t̄

Z′ (4 TeV) → t t̄

 W′ (13 TeV) → WZ → 4q

Improvements in modelling of substructure 
variables will allow more analysis to use fast 
simulation in ATLAS!

ML4Jets 2021 - Joshua Beirer

(AF3 uses a GAN for intermediate energies)
see yesterday’s simulation session for more…

https://indico.cern.ch/event/980214/contributions/4413577/attachments/2277792/3869819/CaloFlow.C.Krause.pdf
https://indico.cern.ch/event/980214/contributions/4413580/attachments/2276523/3867478/ML4Jets_Beirer_07.07.2021.pdf


27Datasets

see also https://iml.web.cern.ch/public-datasets

LHC Olympics

Bryan OstdiekDark Machines Anomaly Challenge 26

The Datasets

Madgraph + Pythia + Delphes
jets, b-jets, electrons, muons, photons

Real-time Anomaly Detection

Dark Machines

+ more presented at 
ML4Jets and beyond!

https://lhco2020.github.io/homepage/
https://mpp-hep.github.io/ADC2021/


28Exploring Data

Discovering / categorizing latent structure in data

…this could be symmetries or multi-class components, etc.
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Discovering / categorizing latent structure in data

…this could be symmetries or multi-class components, etc.

2104.0829

Latent space interpretation
The latent space has � mixtures (�D latent space)
We can visualise the embedding on the Gibbs triangle:

r0 r1

r2
Latent prior

�0 = 1.00
�1 = 0.25
�2 = 0.10

r0 r1

r2

Q/t=0.01

• the latent space is structured hierarchically

• extracts features at di�erent levels of prevalence in the dataset

• organises the jets accordingly

��

A choice of latent spaces
arXiv:����.����, ‘Better latent spaces for better autoencoders’, BMD, T. Plehn, C. Sauer and P. Sorrenson

Plain AE Plain VAE Gaussian mixture VAE Dirichlet VAE

• GMVAE
Latent space is a Gaussian mixture model.
Means and variances of the mixtures are learned.

• DVAE
Latent space is a multinomial mixture model, with jets being assigned mixture weights for each mixture.
Use a prior to shape latent space, and impose a hierarchy in the mixtures.
Very similar to Latent Dirichlet Allocation models!
‘Uncovering latent jet substructure’, arxiv:����.�����, BMD, D. A. Faroughy, J. F. Kamenik

‘Learning the latent structure of collider events’, arxiv:����.�����, BMD, D. A. Faroughy, J. F. Kamenik, M. Szewc

�

Imposing structure can lead to 
more interpretable latent spaces

https://indico.cern.ch/event/980214/contributions/4413712/attachments/2278254/3870596/ml4jets_talk_2021.pdf
https://indico.cern.ch/event/980214/contributions/4413712/attachments/2278254/3870596/ml4jets_talk_2021.pdf
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Key questions: what are uncertainties associated with neural 
networks?  How to make networks use uncertainty information 

(uncertainty-aware)?  How to make networks optimal with 
respect to downstream analysis (Inference-aware)?

Generative
Uncertainties

Tilman Plehn

Regression

Generation

One number is not a prediction

Bayesian generative network [Bellagente, Luchmann, Haußmann, TP (2104.04543)]

– generate events with error bars
i.e. learn density and uncertainty maps over phase space

– normalizing flow/INN [Köthe etal]

– 2D toy models: wedge ramp, kicker ramp, Gaussian ring
) Working error estimate

Simple LHC process: Drell-Yan

– 1D kinematic distributions with errors
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) Convincing NN-critics? Bayesian generative models, parameterized uncertainty networks, …

https://indico.cern.ch/event/980214/contributions/4415046/attachments/2278277/3870636/ml4jets_21.pdf
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Key questions: what are uncertainties associated with neural 
networks?  How to make networks use uncertainty information 

(uncertainty-aware)?  How to make networks optimal with 
respect to downstream analysis (Inference-aware)?

7

the o�cial ATLAS software [65]. The three largest back-
grounds from Z/�

⇤ ! ⌧⌧ , tt̄ and W + jets are simulated
with the same chain and mixed in proportions deter-
mined by their relative cross sections. Di↵erent aspects
of the Z/�

⇤ ! ⌧⌧ background are simulated with Alp-

gen, Pythia8, Herwig, and Sherpa [66]; the details
can be found in Table 1 of Ref. [58]. The tt̄ background is
simulated with Powheg and Pythia8 and the W +jets
background is simulated withAlpgen [67] and Pythia8.

(a) Data generated with z = ⇡
4 .

(b) Data generated with z = ⇡
2 .

FIG. 6: The profile likelihood maxz L(µ, z) as a
function of the parameter of interest, µ for likelihoods

calculated with templates built from the various
classifiers. Narrower curves indicate more precise

measurements having accounted for systematic and
statistical uncertainties. The baseline classifier assumes

z = ⇡
4 , and matches the performance of the

uncertainty-aware classifier in data generated with
z = ⇡

4 (top). In data generated with z = ⇡
2 , the power

of all classifiers other than the uncertainty-aware
classifier become significantly weaker.

Each event is characterized by 29 features2, including the
lepton momenta and angles, the magnitude and direction
of missing transverse momentum, the energy and angles
of leading and sub-leading jets, and several other primary
and derived variables. See Ref. [56] for details.
The most important nuisance parameter is the un-

known absolute energy scale of the hadronically decaying
⌧ leptons. We follow prior studies [52, 59] and model this
using a skewing function [69] which is applied to the ⌧ lep-
ton ET, for signal and background alike. The minimum
ET threshold of 22 GeV is applied after skewing.
At the nominal value of the nuisance parameter, z = 1,

the ⌧ lepton energies are left unchanged. The impact of
z = 0.9 or 1.1, on several features is shown in Fig. 7.
The (unweighted) total number of events that pass the
ET threshold for the z = 0.9, z = 1 and z = 1.1 datasets
are 618906, 719349 and 818201 respectively. The data are
split into training and test set in the ratio 2:1. Since the
data at various values of z are generated from the nominal
sample, the samples are to a large extent correlated. The
train-test split therefore is determined before the skewing
function and ET threshold are applied, ensuring complete
independence between training and test sets.
Thirty bins are used to construct the template and

observed histograms.

A. Description of Trained Models

All methods were implemented using neural networks.
The baseline classifier was trained only on data at z = 1,
while the data augmentation classifier, uncertainty-aware
classifier and the adversarial classifier are all trained at
24 values spaced between z = 0.7 and z = 1.4. Two
additional classifiers were also trained on data at z = 0.8
and z = 1.1 to estimate the best possible performance
for an unparameterized classifier at these values of the
nuisance parameter.
Technical details about the training procedure and ar-

chitectures of the models are given below.

1. Baseline Classifier

The neural network comprises 10 hidden layers with
512 nodes each, ReLU activations and L2 kernel regu-
larizers for all but the first hidden layer and a final layer
with a single node and sigmoid activation. It was trained
with an RMSProp optimizer, BCE loss and a batch size
of 4096.

2 The DER mass MMC feature listed in Ref. [56] was not included
in the studies, following precedent set by Ref. [52], because the
Missing Mass Calculator [68] is slow to run and as an MCMC
algorithm, introduces an additional source of stochasticity which
makes comparisons di�cult.

14

Profile away Z - Example at (μ, Z)True = (1, 1.57)

Narrower is better: We can exclude wrong values of μ with 
greater confidence. 

The profiled (Negative-Log-) Likelihood curve for 
Uncertainty-Aware classifier is much narrower ⇒ smallest 
[statistical + systematic] uncertainty on measurement 

Narrower is better

Signal Strength

Generative
Uncertainties

Tilman Plehn

Regression

Generation

One number is not a prediction

Bayesian generative network [Bellagente, Luchmann, Haußmann, TP (2104.04543)]

– generate events with error bars
i.e. learn density and uncertainty maps over phase space

– normalizing flow/INN [Köthe etal]

– 2D toy models: wedge ramp, kicker ramp, Gaussian ring
) Working error estimate

Simple LHC process: Drell-Yan

– 1D kinematic distributions with errors
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) Convincing NN-critics? Bayesian generative models, parameterized uncertainty networks, …

https://indico.cern.ch/event/980214/contributions/4413687/attachments/2278725/3871412/ML4Jets_08July2021.pdf
https://indico.cern.ch/event/980214/contributions/4415046/attachments/2278277/3870636/ml4jets_21.pdf
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Theory of everything

Physics simulators

Detector-level observables

Pattern recognition

Nature

Detector-level observables

Pattern recognition

Experiment

Data analysis in NP/HEP
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Theory of everything

Physics simulators

Detector-level observables

Pattern recognition

Nature

Detector-level observables

Pattern recognition

Experiment

Parameter 
estimation / 
unfolding

Data curation

Classification to 
enhance 
sensitivity

“signal” versus “background”

calibration 
clustering 
tracking 

noise mitigation 
particle identification 

…

Fast 
simulation / 

phase space
Online 

processing & 
quality control



Deep learning has a great 
potential to enhance, 

accelerate, and empower 
analyses with jets

35Conclusions and outlook
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Due to the limited time, I was only able to cover a 
small selection of new ideas and results
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