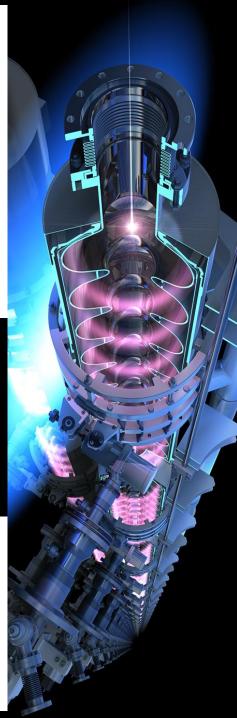
ILC AND CLIC AS FUTURE HIGGS FACTORIES


VINCA Institute of Nuclear Sciences, University of Belgrade

CEPC Workshop 08.11.-12.11. 2021 Naniing China

on behalf of the international development learn physics & detector group

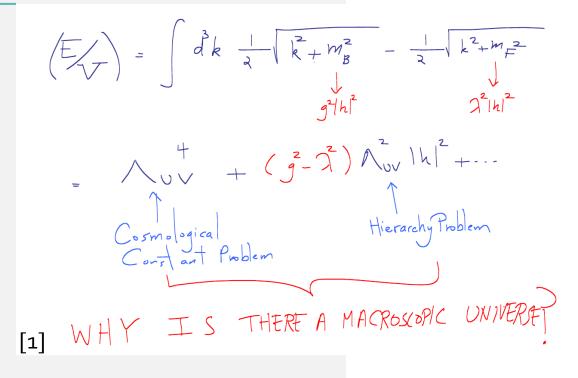
Nanjing, China

Ivanka Bozovic

OVERVIEW

- **WHY HIGGS FACTORIES?** (*brief reminder*)
- DETECTOR CONCEPTS & TECHNOLOGIES at LCs
- HIGHLIGHTS FROM HIGGS PHYSICS AT LINEAR COLLIDERS
- SUMMARY

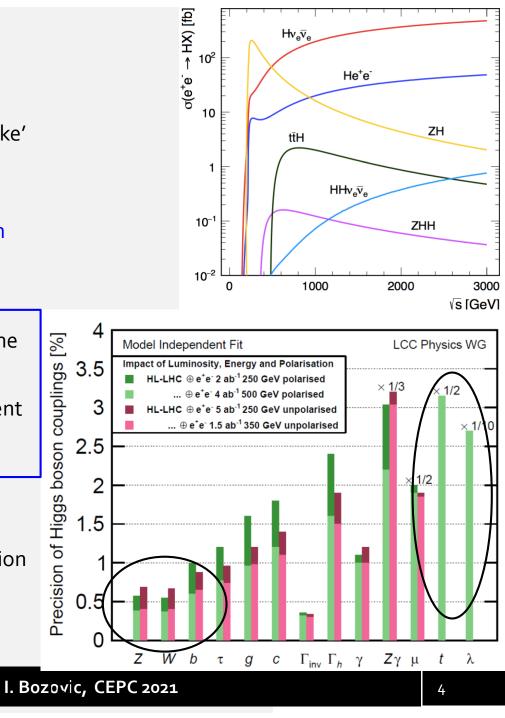
WHY HIGGS FACTORIES?

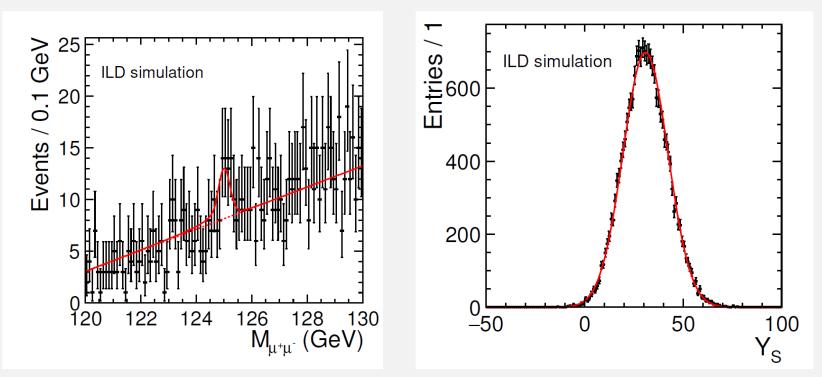

- Higgs discovery ended era of reductionism and symmetries in particle physics [1]
- Never seen before fundamental scalar is discovered, unique (with exception of gravity) in its self-coupling
- Higgs discovery opened several important questions of nature of relativistic vacuum:
 - How can we accommodate it in energy density of the Universe?
 - Why the Higgs is not enormously massive (even Planckian)?
- No New Physics discovery at LHC
- With the LHC resolution to probe Higgs compositeness, the Higgs could be as elementary as pion. So, how pointlike is it?
- λ can be significantly modified by New Physics. HL-LHC will probe λ with 50% uncertainty [2]

Expected deviations in certain models

Deviations in $g_{\rm HHH}$ in the model's parameter space where no signal would be observed at the LHC but $g_{\rm HHH}$ is non-SM

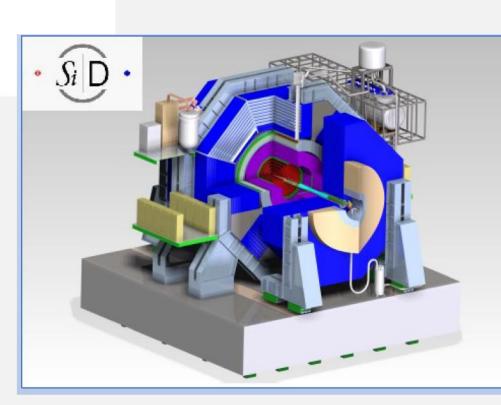
Model	$\Delta g_{ m HHH}/g_{ m HHH}^{ m SM}$				
Mixed-in Singlet	-18 %				
Composite Higgs	tens of %				
Minimal Supersymmetry	-2% to -15%				
NMSSM	-25 %				
Gupta, Rzehak, Wells [1305.6397]					




I. Bozovic, CEPC WS 2021

LINEAR COLLIDERS

- Come as mature technological options developed for decade(s) 'ready to take' - Added value in detector realization (triggerless, power pulsing)
- Staged, upgradable machines ⇒ high center-of-mass energy reach
 - Various Higgs production mechanisms accessible over the energy scale span
 - Enhanced sensitivity to BSM, also in the Higgs sector
- Linear colliders benefit from additional statistics from WW-fusion to access the rare decays ($\gamma\gamma$, $\mu\mu$, $Z\gamma$)
- -Double Higgs production at higher energies enables self-coupling measurement
- -Other processes (like ttH) bring added value (i.e. CPV measurements)
- Beam polarization
 - 80% e- beam @ CLIC, (80%, 30%) (e-,e+) @ ILC
 - Chiral nature of charge currents results in significant sensitivity of WW-fusion cross-section on polarization scheme ($\sim 2 \cdot \mathcal{L}$)
 - Provides new observables sensitive to New Physics
 - Helps characterization of newly discovered particles/models
 - Statistical uncertainty reduction in combination


High-energy, polarization, combination access to rare Higgs decays

Decay mode	Branching ratio
$H \rightarrow b\bar{b}$	56.1%
$\mathrm{H} \rightarrow \mathrm{W}\mathrm{W}^*$	23.1%
$\mathrm{H} ightarrow \mathrm{gg}$	8.5%
$H \to \tau^+ \tau^-$	6.2%
$H \to c \bar c$	2.8%
$H \rightarrow ZZ^*$	2.9%
$\mathrm{H}\to \gamma\gamma$	0.23%
$H\to Z\gamma$	0.16%
$H \rightarrow \mu^+ \mu^-$	0.021%
$\Gamma_{ m H}$	4.2 MeV

$\sqrt{s} = 250 \text{ GeV}$	$q\overline{q}H$	$V\overline{V}H$	ILC250	ILC250+500
L	34%	113%	23%	
R	36%	111%	25%	
$\sqrt{s} = 500 \text{ GeV}$	$q\overline{q}H$	$v\overline{v}H$	ILC500	17%
L	43%	37%	24%	
R	48%	106%	2470	[3

SiD Detector

- 5 T field
- More compact

Hermecity: $\Theta_{min} = 5$ mrad

- All Si

Track momentum resolution: $\sigma_{1/p} < 5 \cdot 10^{-5} \text{ GeV}^{-1}$

Impact parameter resolution: $\sigma_d < 5\mu m \oplus 10\mu m \frac{1 \text{ GeV}}{n \sin^{3/2} \Theta}$

Jet energy resolution: $\sigma_E/E = 3 - 4\%$ (for highest jet energies) ATLAS/2

ATLAS/3

ILD Detector

- 3.5 T field

CMS/40

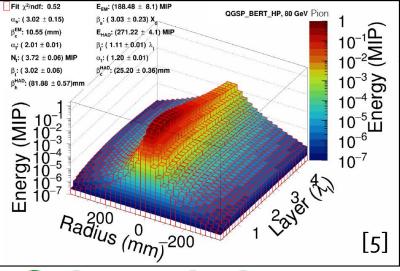
CMS/4

- Optimized for CM energies 90 GeV 1 TeV
- Si/gaseous tracking
- Particle flow calorimetry
- Mature design and available technologies

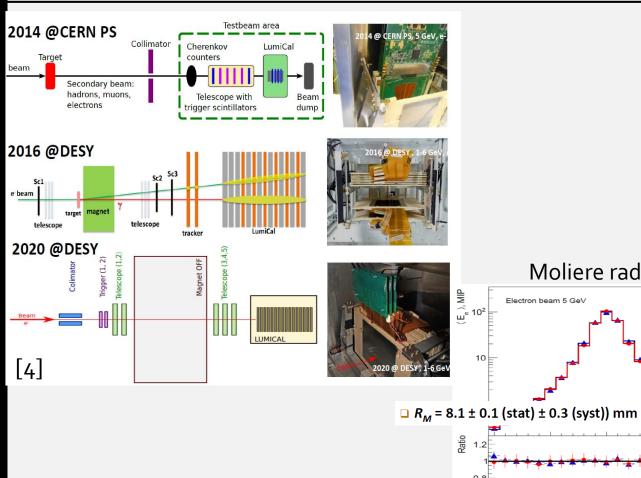
I. Bozovic, CEPC WS 2021

Moliere radius

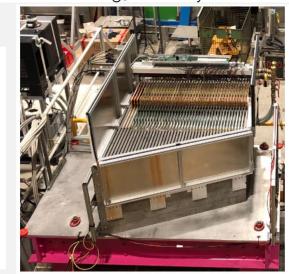
-10


🔺 Data

— Data - fit MC MC - fit


> 10 d_{core}, Pads

High granularity calorimeter => detailed spatial information of the showers



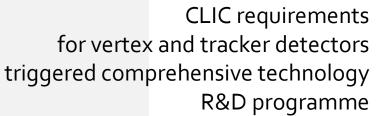
Demonstrated feasibility of detector technologies

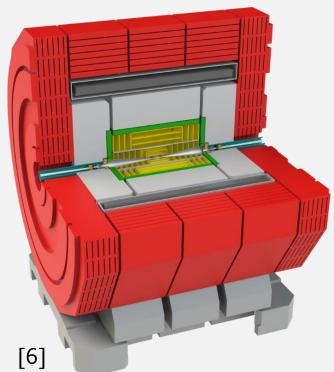
Test-beams @ CERN SPS in 2018:

- 38 layers (72x72 cm²: 4 boards each) with 1.7 cm steel absorber (4 λ)
- ~ 22'000 channels, < 1‰ dead channels
- Very stable running, basically noise-free!

-Beam:

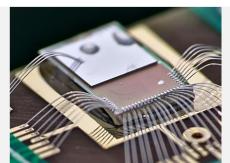

- Muons
- Electrons, 10-200 GeV
- Pions, 10-200 GeV


Total: ~100M events

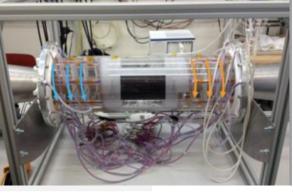


CLIC det

- 4 T field
- Ultra low-mass VTX
- All Si tracking
- Particle flow calorimetry
- Time-stamped readout (10 ns) due to pronounced Beamstrahlung background at higher energies

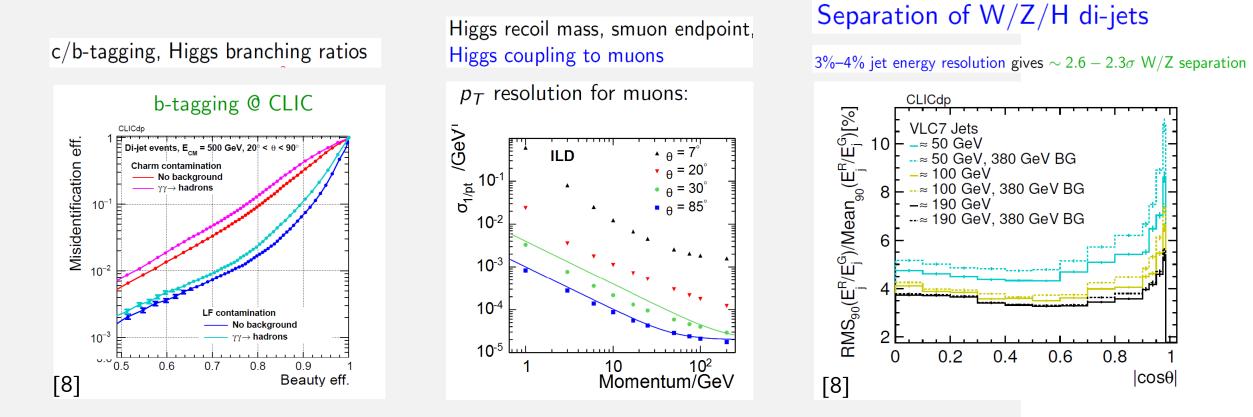


• 4 Yellow Reports 2018



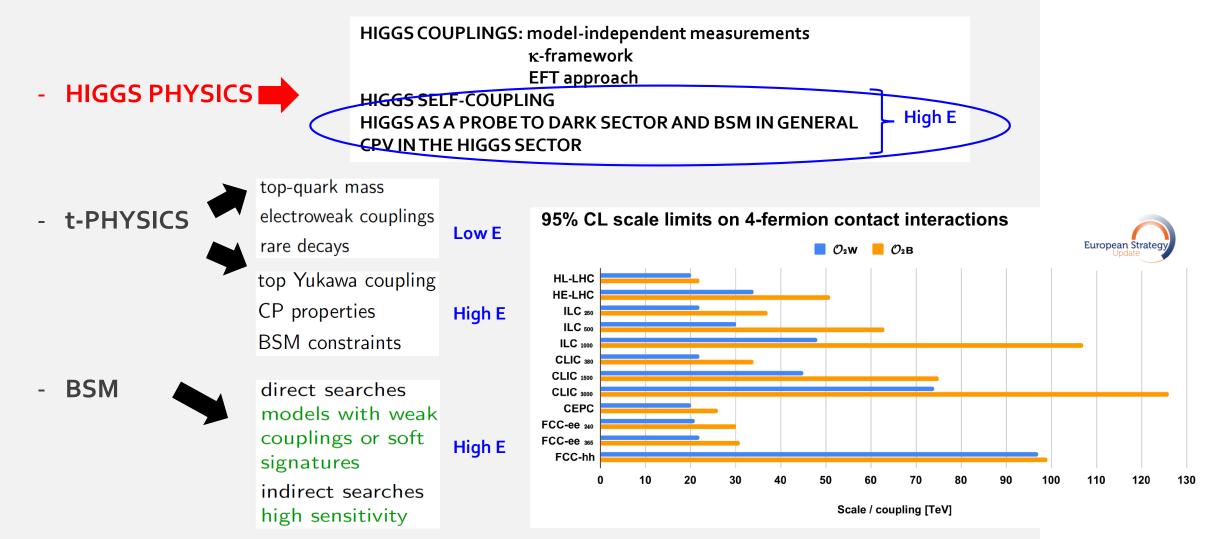
Summary Report Physics Potential

Project Detector Implementation Technologies



• Feasibility of air cooling demonstrated in simulation & full vertex detector mockup

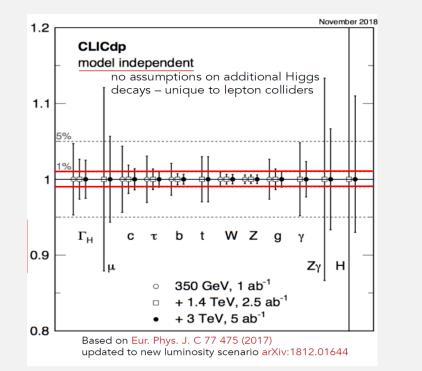
 Full efficiency obtained from hybrid assemblies of 50µm thin sensors that satisfy CLIC time-stamping requirements


SIMILAR PERFORMANCE OF LC DETECTORS

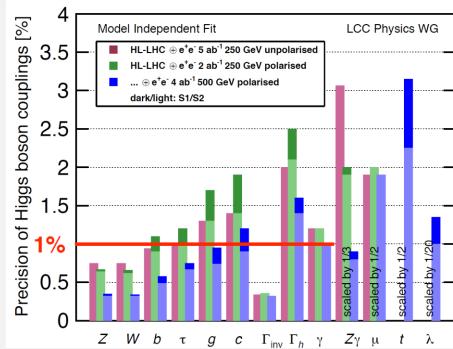
Particle Flow is the 'key word'.

Only neutral particles ID (γ (30%), neutral hadrons (10%)) are left to calorimeters.

PHYSICS PROGRAMME AT A LC



Due to staged realization of LCs, these are ideal machines to explore large physics span, with indirect access to the ~ 100 TeV scale

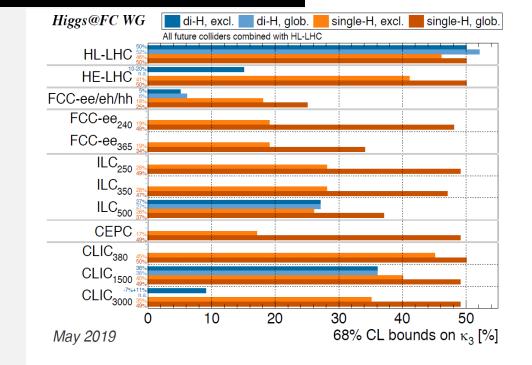

I. Bozovic, CEPCWS 2021

HIGGS COUPLINGS

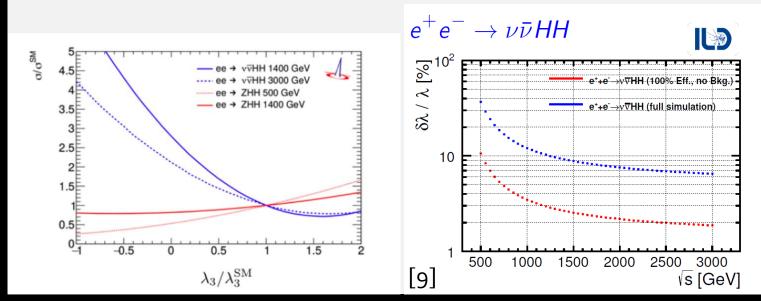
- Model independent approach*,
- Precision better than 1% for most couplings
- Clear improvement with energy
- Sinergy with HL-LHC

Already the single measurement of the HZ cross section at ILC 250 yields a very large improvement of the HL-LHC accuracies

in %		+FCC-ee 365 GeV	+HL- LHC
δ g нzz	0.25	0.22	0.21
δ g нww	1.3	0.47	0.44
δ g ньь	1.4	0.68	0.58
$\delta \mathbf{g}_{Hcc}$	1.8	1.23	1.20
$\delta \mathbf{g}_{Hgg}$	1.7	1.03	0.83
δ g _{H_{ττ}}	1.4	0.8	0.71
δ g _{Hµµ}	9.6	8.6	3.4
δ g _{Ηγγ}	4.7	3.8	1.3
δ g н tt			3.3
δΓΗ	2.8	1.56	1.3

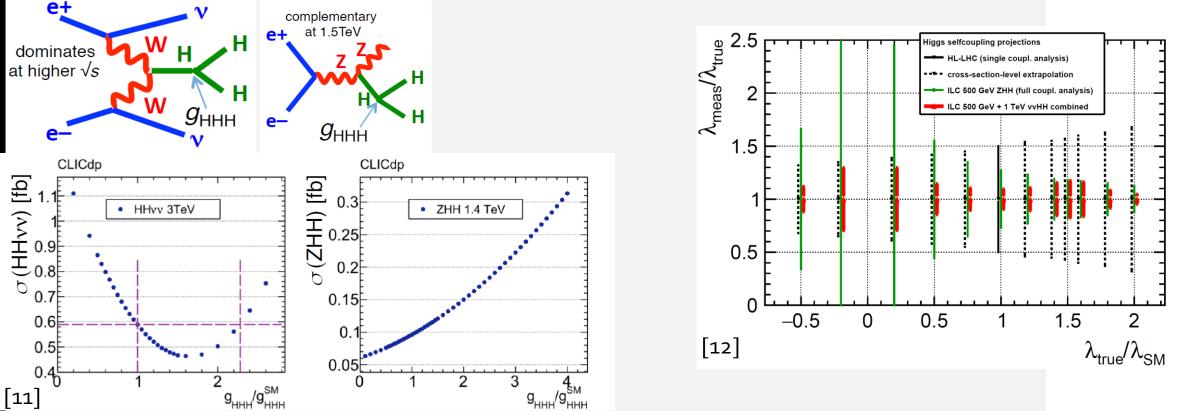

Statistical uncertainties are shown for 5 ab⁻¹@240 GeV and 1.5 ab⁻¹@365 GeV (from FCC-ee CDR)

* Level of accuracy <1% requires incorporation of loop-corrections \rightarrow loss of strict model-independence


I. Bozovic, CEPC WS 2021

HIGGS SELF-COUPLING

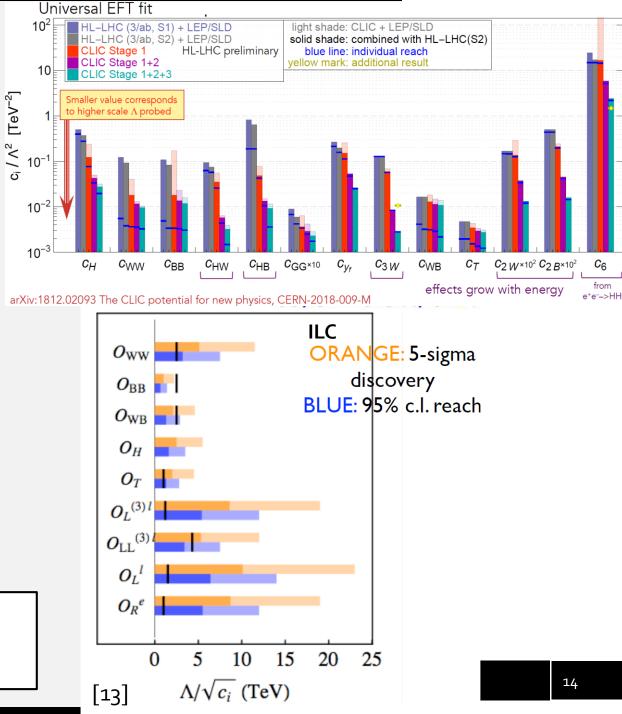
- High energy (>1 TeV) e+e- collider is superior in determination of the Higgs self-coupling
- High energy (double) Higgs production is the most sensitive to deviations of the Higgs self-coupling
- λ is determined from the total rate of HH events (ILD) or template fit of $m_{\rm HH}$ and BDT output (CLICdp)
- Polarization (i.e. -80%) almost doubles the HHvv rate


e+e- colliders precision on λ in combination with HL-LHC:

e- colliders precisio	\mathbf{n} on $\boldsymbol{\lambda}$ in combination	with HL-LHC:				
Low energies:						
LC250 and FCCee365, ±35%						
High energies:						
HL-LHC: ~ ±50%	[10]	$\Delta\lambda_{hhh}/\lambda_{hhh}$				
ILC500 ~ ± 27%	4 ab ⁻¹ at ILC500	27%				
CLIC3000 ~ ± 9%	+8 ab ⁻¹ at ILC1000	10%				
FCC-hh ~ ± 5%						

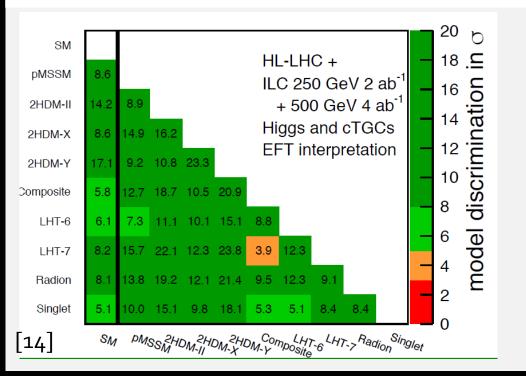
I. Bozovic, CEPC WS 2021

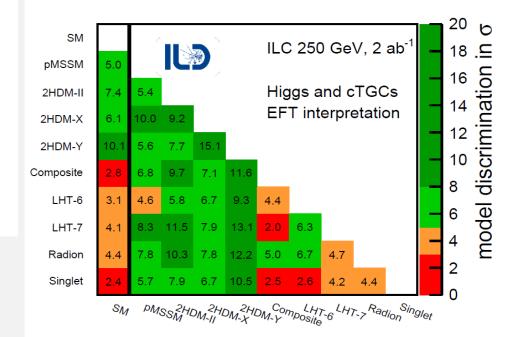
STAGING, COMBINATIONS – LC BENEFITS TO MEASURE λ


- It's important to have (high) energy staging: 1.4(5) TeV complementarity to 3 TeV CLIC
- Different behavior of ZHH and double-Higgs production in WW-fusion, for non-SM values of triple Higgs couplings resolves ambiguity from interference
- Statistical uncertainty reduction in combination
- Clear gain of high(er) center-of-mass energy sensitivity to non-SM values of λ

HIGGS AS A PROBE TO BSM

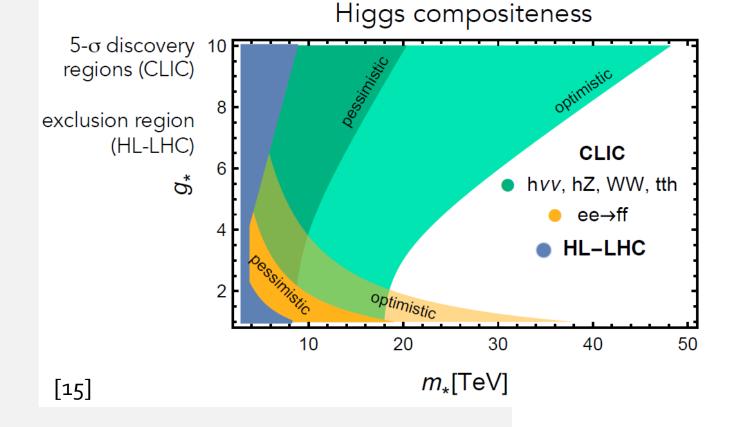
$$\mathcal{L}_{\rm pre-EWSB} = \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i \quad \Longrightarrow \quad e^{+} \stackrel{\gamma/Z \quad \gamma/Z}{\stackrel{\gamma/Z}{\longleftarrow} \stackrel{\gamma/Z}{\stackrel{\gamma/Z}{\longleftarrow} \stackrel{\gamma/Z}{\longleftarrow} \stackrel{\gamma/Z}{\stackrel{\gamma/Z}{\longleftarrow} \stackrel{\gamma/Z}{\longleftarrow} \stackrel{\gamma/Z}{\longleftarrow} \stackrel{\gamma/Z}{\stackrel{\gamma/Z}{\longleftarrow} \stackrel{\gamma/Z}{\longleftarrow} \stackrel{\gamma/Z}{\longleftarrow} \stackrel{\gamma/Z}{\longleftarrow} \stackrel{\gamma/Z}{\longleftarrow} \stackrel{\gamma/Z}{\stackrel{\gamma/Z}{\longleftarrow} \stackrel{\gamma/Z}{\longleftarrow} \stackrel{\gamma/Z}{\longrightarrow} \stackrel{\gamma/Z}$$


- BSM physics can manifest itself in the Higgs sector in several ways:
 - <u>Contribution from the higher order</u> operators (EFT approach)
 - Higgs compositeness
 - Extended Higgs sector
 - DM portal
 - CPV


High energy Higgs production is the most sensitive to contributions from the 6D operators in the EFT approach and thus can probe the highest New Physics scale Λ

HIGGS AS A PROBE TO BSM – EFT INTERPRETATIONS

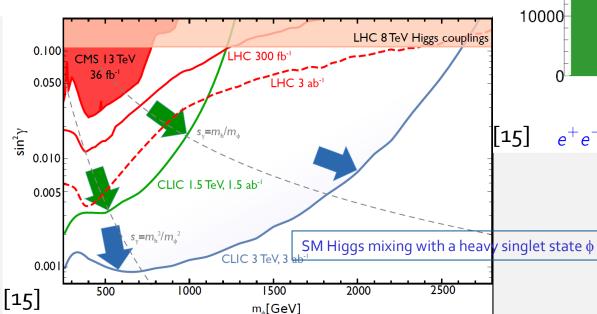
	Model	$b\overline{b}$	$c\overline{c}$	<i>99</i>	WW	au au	ZZ	$\gamma\gamma$	$\mu\mu$
1	MSSM [36]	+4.8	-0.8	- 0.8	-0.2	+0.4	-0.5	+0.1	+0.3
2	Type II 2HD [35]	+10.1	-0.2	-0.2	0.0	+9.8	0.0	+0.1	+9.8
3	Type X 2HD [35]	-0.2	-0.2	-0.2	0.0	+7.8	0.0	0.0	+7.8
4	Type Y 2HD [35]	+10.1	-0.2	-0.2	0.0	-0.2	0.0	0.1	-0.2
5	Composite Higgs [37]	-6.4	-6.4	-6.4	-2.1	-6.4	-2.1	-2.1	-6.4
6	Little Higgs w. T-parity [38]	0.0	0.0	-6.1	-2.5	0.0	-2.5	-1.5	0.0
7	Little Higgs w. T-parity [39]	-7.8	-4.6	-3.5	-1.5	-7.8	-1.5	-1.0	-7.8
8	Higgs-Radion [40]	-1.5	- 1.5	+10.	-1.5	-1.5	- <mark>1.5</mark>	-1.0	-1.5
9	Higgs Singlet [41]	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5



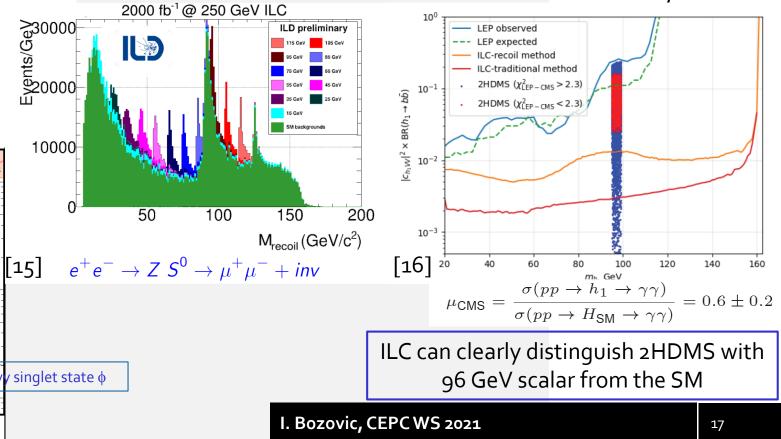
Above 5σ model discrimination already with 250 Gev ILC

 Substantial improvement at higher energies + polarization
 New Physic can be probed at a discovery limit for almost all models unreachable at HL-LHC

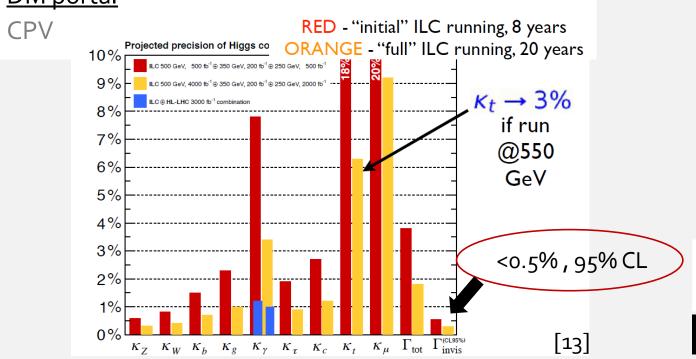
HIGGS AS A PROBE TO BSM

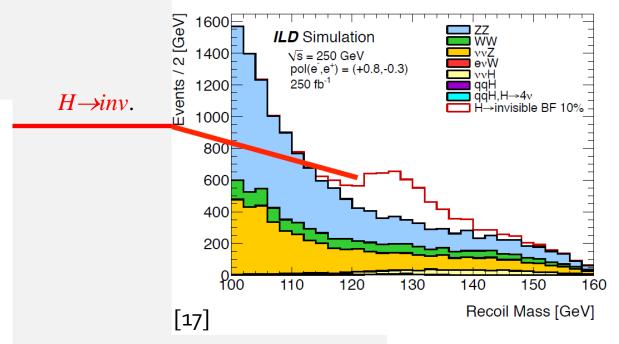

- BSM physics can manifest itself in the Higgs sector in several ways:
 - Contribution from the higher order operators (EFT approach)
 - <u>Higgs compositeness</u>
 - Extended Higgs sector
 - DM portal
 - CPV

The scale of compositeness can be probed significantly higher from the high-energy collider kinematic limit


HIGGS AS A PROBE TO BSM

- BSM physics can manifest itself in the Higgs sector in several ways:
 - Contribution from the higher order operators (EFT approach)
 - Higgs compositeness
 - Extended Higgs sector
 - DM portal
 - CPV


- In majority of BSM models, SM Higgs comes with additional Higgses (2HDM, SUSY in general, compositeness,..etc.)
- Can be a lighter scalar than SM Higgs it is important to be capable of probing such states at future colliders
- If SM Higgs is the lightest, other states are nearly mass-


degenerated

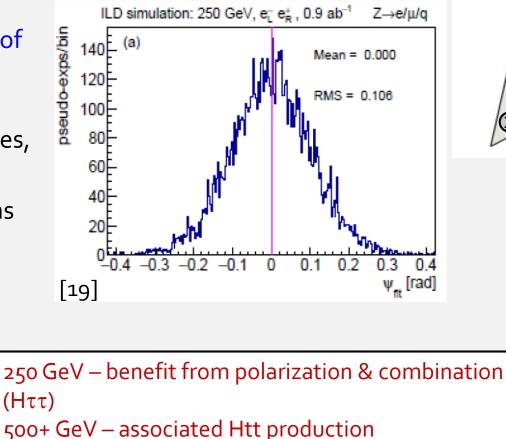
HIGGS TO INVISIBLE

- BSM physics can manifest itself in the Higgs sector in several ways:
 - Contribution from the higher order operators (EFT approach)
 - Higgs compositeness
 - Extended Higgs sector
 - <u>DM portal</u>

- Looking at the recoil mass under the condition that nothing observable is recoiling against the Z boson (only one Z per event)
- Access to DM connected to SM particles through a specific set of operators (portals)

 $\epsilon_H |H|^2 |\Phi|^2$

I. Bozovic, CEPC WS 2021


 $\frac{1}{2}\epsilon_Y F^Y_{\mu\nu} F'^{\mu\nu}$

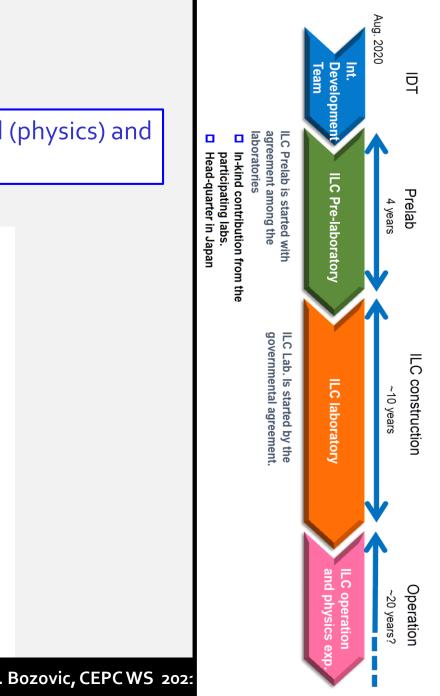
 $\epsilon_a \frac{\alpha}{f_a} F_{\mu\nu} \tilde{F}^{\mu\nu}$

CPV IN THE HIGGS SECTOR

- More difficult than just a spin/parity determination: Higgs can be a mixture of different CP eigenstates $h = H \cdot \cos \psi + A \cdot \sin \psi$
- Can be measured in Hff and HVV vertices, both in Higgs production and decays
- Hff (HVV) sensitive to CPV contributions at the tree (loop) level
- Only lose bounds (at present) on a quantum superposition od different CP states (i.e. ψ <43°, 95% CL, LHC [18])

Collider	$\Delta oldsymbol{\psi}_{CP}$
HL-LHC	8°
HE-LHC	-
CEPC	_
FCC-ee ₂₄₀	10°
ILC ₂₅₀	4°

1 TeV – ZZ-fusion, Higgs production


3 TeV – WW-fusion, Higgs decay

In the Higgs rest frame e^+ AD Z (W) Z (W) Z/W Z/W

SUMMARY

Linear colliders as candidates for future Higgs factories are well studied (physics) and technologically mature (detector) projects ready to be deployed

- All future e+e- projects bring significant added value to the projected HL-LHC sensitivities in the Higgs sector...
- ... enabling discrimination of BSM models inaccessible at HL-LHC
- Already lowest energy phases brings sensitivity far beyond the projected HL-LHC precision on Higgs couplings
- Higher center of mass energies significantly extends physics span of a LC (Higgs self-coupling, BSM scenarios in the Higgs sector)
 Energy upgrade is important – genuine advantage of a LC
- Additional enhancement comes from polarization (precision, model discrimination)

meeting in February 2020 to advance the ILC realization step-wise

CEPC Workshop 08.11.-12.11. 2021 Nanjing, China

The 2021 International Workshop on the High Energy Circular Electron Positron Collider

THANK YOU

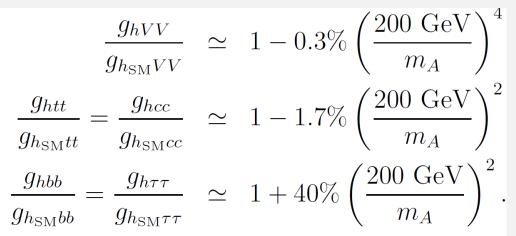
References:

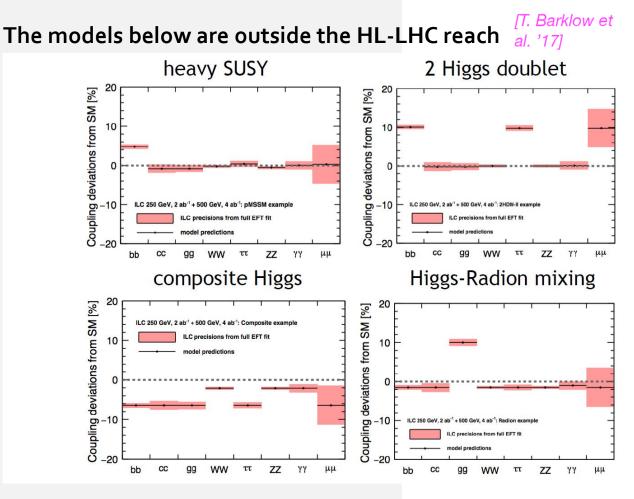
1. N. Arkani Hamed, CEPCWS, Beijing, 2019,

https://indico.ihep.ac.cn/event/7389/session/o/contribution/18/material/slides/o.pdf

- 2. Higgs@FCWG
- 3. S. Kawada, Prospects of measuring Higgs boson decays into muon pairs at the ILC, arXiv:1902.05021
- 4. A. Neagu on behalf of FCAL, ILCX2021, October 26, 2021
- 5. A. Laudrain on behalf of CALICE, ILCX2021, Octobar 26, 2021
- 6. A. Robson et al., The Compact Linear e+e- Collider (CLIC): Accelerator and Detector, arXiv:1812.07987
- 7. A. Robson, 20th Lomonosov Conference, Moscow, August 2021
- 8. D. Arominski, A detector for CLIC: main parameters and performance, arXiv:1812.07337
- 9. ILC Higgs White Paper, arXiv:1310.0763v3 [hep-ph]
- 10. S. Kawada, ILC Physics potential, EPS-HEP2021
- 11. A. Robson, CEPCWS EU edition, Oxford, 2019
- 12. J. List, Straight to the future: Physics opportunities at the ILC, 20th Lomonosov Conference on Particle Physics, 2021
- 13. M. Perelstein, PHENO-16, Pittsburgh, May 11 2016, arXiv:1506.05992
- 14. J. List, , ECFA HIggs@FutureColliders, 2019 and arXiv:1710.07621
- 15. The CLIC Potential for New Physics, arXiv:1812.02093
- 16. S. Heinemeyer et al, A 96 GeV Higgs Boson in the 2HDMS and the N2HDM, ILCX2021, October 26, 2021
- 17. Yu Kato @ EPS-HEP 2019
- 18. ATLAS Collaboration, Phys. Rev. Lett. 125 (2020) 061802, arxiv:2004.04545
- 19. D. Jeans et al., Measuring the CP state of tau lepton pairs from Higgs decay at the ILC, arXiv:1804.01241
- B1. G. Weiglein, Higgs requirements from theory, DESY, Hamburg, May 2019
- B2. ILC Higgs White Paper, arXiv:1310.0763v3 [hep-ph]
- B3. M. Perelstein, ILCX2021, October 26, 2021
- B4. P. Bambade et al., ILC A Global Project, arXiv:1903.01629v3
- B5. D. Schulte, ESPP Open Symposium, Granada, 2019

CEPC Workshop 08.11.-12.11. 2021 Nanjing, China


CEPC Workshop 08.11.-12.11. 2021 Nanjing, China

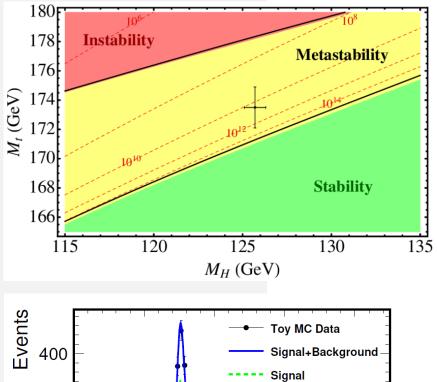

BACK UP

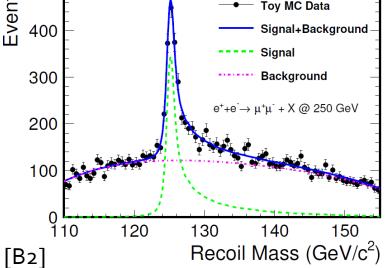
HIGGS COUPLINGS

How well do we need to know Higgs couplings?

- In many BSM models one expects only % level deviations from the SM couplings for BSM particles in the TeV range
- Higgs to EW bosons couplings are particularly sensitive to BSM; λ even more
- Example, 2HDM-type model in decoupling limit [B1]

Percent order accuracy on Higgs couplings offers access to various BSM scenarios


I. Bozovic, CEPC WS 2021


HIGGS MASS

- Which precision of the Higgs mass is needed?
 - Vacuum stability (at least several GeV)
 - Impact on $H \rightarrow ZZ^*$ width (a few tens of MeV)
- Current precision 160 MeV
- Comparable precision with HL-LHC

Collider Scenario	Strategy	δm_H (MeV)	$\delta(\Gamma_{ZZ^*})$ (%)
LHC Run-2	$m(ZZ), m(\gamma\gamma)$	160	1.9
HL-LHC	m(ZZ)	10-20	0.12-0.24
$ILC_{250} \\ CLIC_{380} \\ CLIC_{1500} \\ CLIC_{3000}$	ZH recoil	14	0.17
	ZH recoil	78	1.3
	m(bb) in Hvv	30 ¹⁵	0.56
	m(bb) in Hvv	23	0.53
FCC-ee	<i>ZH</i> recoil <i>ZH</i> recoil	11	0.13
CEPC		5.9	0.07

M. Cepeda, Higgs precision measurements at future colliders, IFT UAM-CSIC, Madrid, Spain, July 2019

I. Bozovic, CEPCWS 2021

HIGGS WIDTH

- Being less than 5 MeV, Higgs decay width can not be *directly* measured at any proposed e+ecollider
- Can be determined from individual decays (quasi-direct measurement), i.e. H→WW decays in WW-fusion, H→ZZ in HZ)

 $\sigma(ee \to ZH) \cdot BR(H \to ZZ) \propto \frac{g_{HZ}^4}{\Gamma}$

- In a combination of measurements:

$$\frac{\sigma(\text{ee}\rightarrow\text{ZH})\cdot\text{BR}(\text{H}\rightarrow\text{WW})\cdot\sigma(\text{ee}\rightarrow\text{ZH})\cdot\text{BR}(\text{H}\rightarrow\text{bb})}{\sigma(\text{ee}\rightarrow\nu\nu\text{H})\cdot\text{BR}(\text{H}\rightarrow\text{bb})}$$

$$\propto \frac{g_{\text{HZ}}^2 \cdot g_{\text{HW}}^2}{\Gamma} \cdot \frac{g_{\text{HZ}}^2 \cdot g_{\text{Hb}}^2}{I} \cdot \frac{I}{g_{\text{HW}}^2 \cdot g_{\text{Hb}}^2} = \frac{g_{\text{HZ}}^4}{\Gamma}$$

 The ultimate precision is reached in a global fit, (model-independent or in the LHC-style, so called κ-framework):

$$\Gamma_H = \frac{\Gamma_H^{\rm SM} \cdot \kappa_H^2}{1 - (BR_{inv} + BR_{unt})}$$

Or in a global (model-dependent) EFT fit (assumes the new physics scale Λ >> M_H)

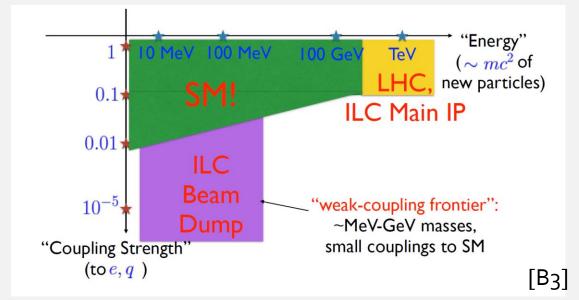
-

Statistical accuracy of 1-2%

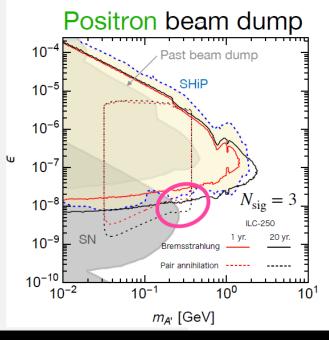
Collider	$\frac{\delta\Gamma_H}{\delta\Gamma_H}$ (%) from Ref.	Extraction technique standalone result	$\delta\Gamma_H$ (%) kappa-3 fit
ILC ₂₅₀	2.4	EFT fit [3]	2.4
ILC500	1.6	EFT fit [3, 11]	1.1
CLIC ₃₅₀	4.7	κ-framework [85]	2.6
CLIC ₁₅₀₀	2.6	κ-framework [85]	1.7
CLIC ₃₀₀₀	2.5	κ-framework [85]	1.6
CEPC	3.1	$\sigma(ZH, v\bar{v}H), BR(H \rightarrow Z, b\bar{b}, WW)$ [90]	1.8
FCC-ee ₂₄₀	2.7	κ-framework [1]	1.9
FCC-ee ₃₆₅	1.3	κ-framework [1]	1.2

arXiv:1905.03764

I. Bozovic, CEPCWS 2021

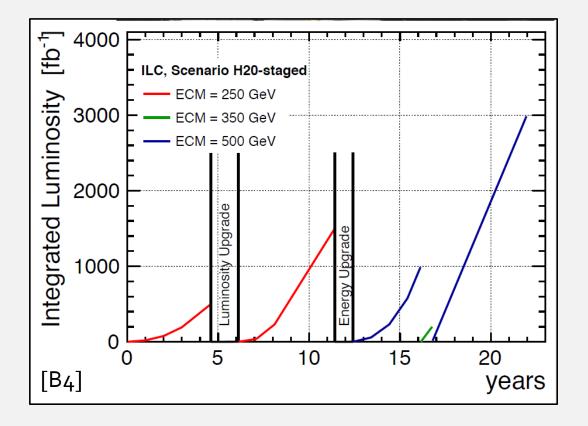

ILCX

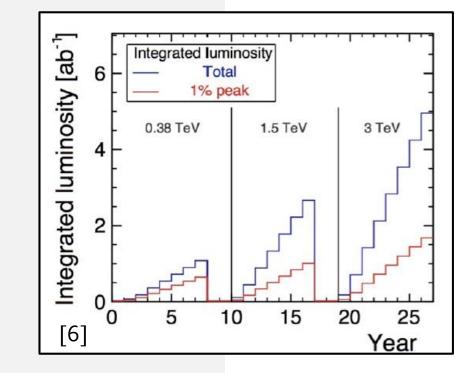
ILC comes with the collider program and rich auxiliary experiments


Dark sector (ILC-BDX), fixed-target and beam dump experiments (ILCX)

- The physics program at the ILC main IP will study physics at O(100 GeV) mass scale, with O(0.01-0.1) coupling strength

- Fixed-target experiments at ILC beam dumps offer access to a complementary regime: <10 GeV mass scale, <<1 coupling strength




[B3]

LUMINOSITIES

COSTS

Project	Туре	Energy [TeV]	Int. Lumi. [a ⁻¹]	Oper. Time [y]	Power [MW]	Cost
ILC	ee	0.25	2	11	129 (upgr. 150-200)	4.8-5.3 GILCU + upgrade
		0.5	4	10	163 (204)	7.98 GILCU
		1.0			300	?
CLIC	ee	0.38	1	8	168	5.9 GCHF
		1.5	2.5	7	(370)	+5.1 GCHF
		3	5	8	(590)	+7.3 GCHF
CEPC	ee	0.091+0.16	16+2.6		149	5 G\$
		0.24	5.6	7	266	
FCC-ee	ee	0.091+0.16	150+10	4+1	259	10.5 GCHF
		0.24	5	3	282	-
		0.365 (+0.35)	1.5 (+0.2)	4 (+1)	340	+1.1 GCHF
LHeC	ер	60 / 7000	1	12	(+100)	1.75 GCHF
FCC-hh	рр	100	30	25	580 (550)	17 GCHF (+7 GCHF)
HE-LHC	рр	27	20	20		7.2 GCHF