

The ᄅ리 International Workshop on the High Energy Circular Electron Positron Collider

Sensitivity to anomalous ZZH/WWH couplings at the ILC

8th, November, 2021, T.Ogawa
on behalf of the ILD collaboration

Outline

-. EFT and Lagrangian at the ILC
-. Impact of the anomalous ZZH/WWH couplings on kinematical shape
-. Estimation of the sensitivity to the anomalous ZZH/WWH couplings
-. Comparison of the sensitivity between LHC and ILC
-. Summary

Motivations for Effective Field Theory (EFT)

-. Several phenomena are not allowed by the SM.
-. Supersymmetry provides solutions for them.
-. No conclusive evidence of SUSY/BSM at the LHC.
-. BSM could exist at an energy scale to be high enough ($>\mathrm{TeV}$) compared to the scale of EW symmetry breaking.
-. Now, EFT is valid given that BSM may exists at high energy.
-. A strong phenomenological approach is EFT as analogous to Fermi's theory of the beta decay.

Current limits at the end of 2015-2018 data taking
-. Instantaneous appearance of a high-energy field is renormalized into the coupling constants at lower energy. It modifies the constant from the SM expectation.

phenomena at high E

at low E

$$
+\vartheta\left(\frac{p^{2}}{m_{W}^{2}}\right)
$$

Once our E gets higher

Anomalous VVH couplings in SMEFT at the ILC

-. Model independent test for the gauge-Higgs sector.
-. Model-independent Lagrangian is defined by taking all possible dim-6 combinations consisting of the SM fields.
-. The SU2xU1 gauge invariance, Lorentz invariance.
Define the acronym "SMEFT": Higgs-strahlung, Weak Boson Fusion
-. After SSB, several terms relevant to the gauge-Higgs sector:

$$
\begin{aligned}
\Delta \mathscr{L}_{h} & =-\eta_{h} \lambda_{0} v_{0} h^{3}+\frac{\theta_{h}}{v_{0}} h \partial_{\mu} h \partial^{\mu} h \longleftarrow \text { (Higgs) } \quad \begin{array}{l}
\text { T. Barklow et al., } \\
\text { PRD 97, } 053004 \text { (2 }
\end{array} \\
& +\eta_{Z} \frac{m_{Z}^{2}}{v_{0}} Z_{\mu} Z^{\mu} h+\frac{1}{2} \eta_{2 Z} \frac{m_{Z}^{2}}{v_{0}^{2}} Z_{\mu} Z^{\mu} h^{2} \longleftarrow \text { (same structure with the SM) } \\
& +\eta_{W} \frac{2 m_{W}^{2}}{v_{0}} W_{\mu}^{+} W^{-\mu} h+\eta_{2 W} \frac{m_{W}^{2}}{v_{0}^{2}} W_{\mu}^{+} W^{-\mu} h^{2} \\
& +\frac{1}{2}\left(\zeta_{Z Z} \frac{h}{v_{0}}+\frac{1}{2} \zeta_{2 Z} \frac{h^{2}}{v_{0}^{2}}\right) \hat{Z}_{\mu \nu} \hat{Z}^{\mu \nu}+\left(\zeta_{W W} \frac{h}{v_{0}}+\frac{1}{2} \zeta_{2 W} \frac{h^{2}}{v_{0}^{2}}\right) \hat{W}_{\mu \nu}^{+} \hat{W}^{-\mu \nu} \\
& +\frac{1}{2}\left(\zeta_{A A} \frac{h}{v_{0}}+\frac{1}{2} \zeta_{2 A} \frac{h^{2}}{v_{0}^{2}}\right) \hat{A}_{\mu \nu} \hat{A}^{\mu \nu}+\left(\zeta_{A Z} \frac{h}{v_{0}}+\zeta_{2 A Z} \frac{h^{2}}{v_{0}^{2}}\right) \hat{A}_{\mu \nu} \hat{Z}^{\mu \nu} \\
& +\frac{1}{2}\left(\tilde{\zeta}_{Z Z} \frac{h}{v_{0}}+\frac{1}{2} \tilde{\zeta}_{2 Z} \frac{h^{2}}{v_{0}^{2}}\right) \hat{Z}_{\mu \nu} \hat{\tilde{Z}}^{\mu \nu}+\left(\tilde{\zeta}_{W W} \frac{h}{v_{0}}+\frac{1}{2} \tilde{\zeta}_{2 W} \frac{h^{2}}{v_{0}^{2}}\right) \hat{W}_{\mu \nu}^{+} \hat{\tilde{W}}^{-\mu \nu}
\end{aligned}
$$

Anomalous VVH couplings in SMEFT at the ILC

Higgs production in the SM
-. Model independent test for the gauge-Higgs sector.
-. Model-independent Lagrangian is defined by taking all possible dim-6 combinations consisting of the SM fields.
-. The SU2xU1 gauge invariance, Lorentz invariance.
Define the acronym "SMEFT": Higgs-strahlung, Weak Boson Fusion
-. After SSB, several terms relevant to the gauge-Higgs sector:

$$
\begin{aligned}
\Delta \mathscr{L}_{h} & =-\eta_{h} \lambda_{0} v_{0} h^{3}+\frac{\theta_{h}}{v_{0}} h \partial_{\mu} h \partial^{\mu} h \longleftarrow \text { (Higgs) } \quad \begin{array}{l}
\text { T. Barklow et al., } \\
\text { PRD 97, 053004 (2018) }
\end{array} \\
& +\eta_{Z} \frac{m_{Z}^{2}}{v_{0}} Z_{\mu} Z^{\mu} h+\frac{1}{2} \eta_{2 Z} \frac{m_{Z}^{2}}{v_{0}^{2}} Z_{\mu} Z^{\mu} h^{2} \longleftarrow \text { (same structure with the SM) } \\
& +\eta_{W} \frac{2 m_{W}^{2}}{v_{0}} W_{\mu}^{+} W^{-\mu} h+\eta_{2 W} \frac{m_{W}^{2}}{v_{0}^{2}} W_{\mu}^{+} W^{-\mu} h^{2} \\
& +\frac{1}{2}\left(\zeta_{Z Z} \frac{h}{v_{0}}+\frac{1}{2} \zeta_{2 Z} \frac{h^{2}}{v_{0}^{2}}\right) \hat{Z}_{\mu \nu} \hat{Z}^{\mu \nu}+\left(\zeta_{W W} \frac{h}{v_{0}}+\frac{1}{2} \zeta_{2 W} \frac{h^{2}}{v_{0}^{2}}\right) \hat{W}_{\mu \nu}^{+} \hat{W}^{-\mu \nu} \\
& +\frac{1}{2}\left(\zeta_{A A} \frac{h}{v_{0}}+\frac{1}{2} \zeta_{2 A} \frac{h^{2}}{v_{0}^{2}}\right) \hat{A}_{\mu \nu} \hat{A}^{\mu \nu}+\left(\zeta_{A Z} \frac{h}{v_{0}}+\zeta_{2 A Z} \frac{h^{2}}{v_{0}^{2}}\right) \hat{A}_{\mu \nu} \hat{Z}^{\mu \nu} \\
& +\frac{1}{2}\left(\tilde{\zeta}_{Z Z} \frac{h}{v_{0}}+\frac{1}{2} \tilde{\zeta}_{2 Z} \frac{h^{2}}{v_{0}^{2}}\right) \hat{Z}_{\mu \nu} \hat{\tilde{Z}}^{\mu \nu}+\left(\tilde{\zeta}_{W W} \frac{h}{v_{0}}+\frac{1}{2} \tilde{\zeta}_{2 W} \frac{h^{2}}{v_{0}^{2}}\right) \hat{W}_{\mu \nu}^{+} \hat{\tilde{W}}^{-\mu \nu}
\end{aligned}
$$

In addition, $H \rightarrow W W^{*}$ is included. $H \rightarrow Z Z^{*}$ is not included due to less stat.

Framework and Software for the study

-. The study was done based on International Large Detector (ILD) for the ILC. Reconstruction tools developed by 2018 are used in the study.
https://arxiv.org/abs/1306.6329 Volume 4: Detectors
-. After 2018 the design was updated and reconstruction tools have been developed based on ToF and DNN, which could improve the results.
https://arxiv.org/abs/1912.04601 The ILD detector at the ILC
-. Physics generator for predicting the shape of kinematics including the anomalous VVH is PHYSSIM, which has been developed for LC physics studies as of today. https://www-ilc.kek.jp/subg/off//physsim/
-. All MC event samples used in the study was originally generated for ILC physics studies.

A magnetic filed of 3.5 [T]
Resolutions as the key detector performance

Impact parameter	$\sigma_{r \phi}$	$=5 \oplus 10 / p \cdot \sin ^{3 / 2} \theta[\mu \mathrm{~m}]$
Momentum	$\sigma_{1 / p_{T}}$	$\sim 2 \times 10^{-5}\left[\mathrm{GeV}^{-1}\right]$
Jet energy	$\sigma_{E_{\mathrm{jet}}} / E_{\mathrm{jet}}$	$\sim 3 \%\left(E_{\mathrm{jet}}<100 \mathrm{GeV}\right)$

Impact on the shape in ZZH

b term

bt term

parity-conserving interaction scalar: CP-even interaction

Rescaling the normalization.

$$
\begin{aligned}
\mathcal{L}_{\mathrm{ZZH}}= & M_{\mathrm{Z}}^{2}\left(\frac{1}{v}+\frac{a_{\mathrm{Z}}}{\Lambda}\right) Z_{\mu} Z^{\mu} H \quad \text { the nc } \\
& +\frac{b_{\mathrm{Z}}}{2 \Lambda} \hat{Z}_{\mu \nu} \hat{Z}^{\mu \nu} H+\frac{\widetilde{b}_{\mathrm{Z}}}{2 \Lambda} \hat{Z}_{\mu \nu} \widetilde{\hat{Z}}^{\mu \nu} H .
\end{aligned}
$$

parity-conserving interaction pseudo-scalar : CP-odd interaction
-. a term is the same structure with the SM.
-. b term is a new scalar (Parity=+1) structure

$$
\begin{array}{r}
e^{+} e^{-} \rightarrow Z h \\
\rightarrow l^{+} l^{-} h
\end{array}
$$ the coupling of q to Z is different from the lepton, thus, the shape varies

$$
\begin{gathered}
\quad \zeta \\
e^{+} e^{-} \rightarrow Z h \\
\rightarrow q \bar{q} h
\end{gathered}
$$

-. bt term is a new pseudo-scaler (Parity= -1) structure
-. Field strength has
-. Focus on ZZH:

$$
\Delta
$$

Because of the V-A structure momentum dependence

Impact on the shape in WWH

-. Focus on WWH:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{WWH}}= & 2 M_{\mathrm{W}}^{2}\left(\frac{1}{v}+\frac{a_{\mathrm{W}}}{\Lambda}\right) W_{\mu} W^{\mu} H \quad \begin{array}{c}
\text { Rescaling } \\
\text { the normalization. }
\end{array} \\
& +\frac{b_{\mathrm{W}}}{\Lambda} \hat{W}_{\mu \nu} \hat{W}^{\mu \nu} H+\frac{\widetilde{b}_{\mathrm{W}}}{\Lambda} \hat{W}_{\mu \nu} \widetilde{\hat{W}}^{\mu \nu} H
\end{aligned}
$$

parity-conserving interaction scalar: CP-even interaction
parity-conserving interaction pseudo-scalar: CP-odd interaction
-. a term is the same structure with the SM.
-. b term is a new scalar (Parity=+1) structure
-. bt term is a new pseudo-scaler (Parity= -1) structure
-. Field strength has momentum dependence
the Higgs decay

the Higgs rest frame
b term

\& Flavor ID

Analysis strategy

-. Clarification of the impact of shape and normalization on the sensitivity
$\chi_{\text {shape }}^{2}=\sum_{j=1}^{n}\left[\frac{N_{\mathrm{SM}} \sum_{i=1}^{n}\left(S_{i}^{\mathrm{SM}} \cdot f_{j i}^{\mathrm{Det}}-S_{i}^{\mathrm{BSM}} \cdot f_{j i}^{\mathrm{Det}}\right)}{\Delta n_{\mathrm{SM}}^{\mathrm{obs}}\left(x_{j}\right)}\right]^{2}=\begin{aligned} & \text { Detector } \\ & \text { acceptance }\end{aligned}$
$\begin{aligned} & \text { Normalized } \\ & \text { shape }\end{aligned} S_{i}^{\mathrm{BSM}}=\frac{1}{\sigma_{\mathrm{BSM}}} \frac{d \sigma_{\mathrm{BSM}}}{d x}\left(x_{i} ; \vec{a}_{\mathrm{Z}}\right)$
Detector migration matrix

\hookrightarrow Inputs from the past full simulation studies.

$$
\delta \sigma z h=2 \%, 3 \% \text { for } 250 \mathrm{GeV}, 500 \mathrm{GeV} \text { (e.g. arXiv:1604.07524) }
$$ $\delta \sigma z h=2 \%, 3 \%$ for $250 \mathrm{GeV}, 500 \mathrm{GeV}$ (e.g. arXiv:1604.07524)

Smear following the detector effects
-. Prepared a multi dimensional distribution in each process, which is sensitive to the anomalous VVH couplings.

$$
\chi_{\mathrm{norm}}^{2}=\left[\frac{N_{\mathrm{SM}}-N_{\mathrm{BSM}}\left(\vec{a}_{Z}\right)}{\delta \sigma_{Z H} \cdot N_{\mathrm{SM}}}\right]^{2}
$$

-. The variation of partial widths due to anomalous VVH is not considered.
Thus, normalization of the decay is not included in this study.
Consideration of variation of partial widths will be a next step.

Constraints on ZZH

$$
e^{+} e^{-} \rightarrow q \bar{q} h(h \rightarrow b \bar{b}) \text { has large statistics. }
$$

-. Analyzed dominant processes for E_{cm} of $250 \& 500 \mathrm{GeV}$.

$$
\left\{\begin{array}{l}
e^{+} e^{-} \rightarrow Z h \rightarrow \mu^{+} \mu^{-} h, e^{+} e^{-} h \\
e^{+} e^{-} \rightarrow Z h \rightarrow q \bar{q} h(h \rightarrow b \bar{b}) \\
e^{+} e^{-} \rightarrow Z Z \rightarrow e^{+} e^{-} h(h \rightarrow b \bar{b})
\end{array}\right.
$$

Fit in three parameters.
-. Inclusion of the norm. only is color.
-. Contours include the shape.

-. qqH has significant sensitivity even w/o jet charge identification.
-. The ZZ-fusion can disentangle the correlation \rightarrow it gets significant more at 500 GeV .

-. The sensitive in ILC full operation 500 GeV gives better sensitivities, and w/250 GeV squeezes the area more.

Constraints on ZZH and ZyH

A and Z are mixing through $\operatorname{SU} 2 x U 1$ gauge symmetry.
\rightarrow Beam polarization can disentangle ZZH and ZyH by employing the characteristic of B and W^{3}

To connect both parametrizations, the different beam polarization state LR and RL are connected based on the cross section calculation. (Based on PHYSSIM)

250 GeV case

$$
\begin{aligned}
\left\{\begin{aligned}
\zeta_{Z Z}=0.54 b_{Z}^{e_{L}^{-} e_{R}^{+}}+0.46 b_{Z}^{e_{R}^{-} e_{L}^{+}} \\
\zeta_{A Z}=0.34 b_{Z}^{e_{L}^{-} e_{R}^{+}}-0.34 b_{Z}^{e_{R}^{-} e_{L}^{+}}
\end{aligned}\right. & \begin{aligned}
\mathcal{L}_{Z Z H+\gamma Z H} & =M_{Z}^{2} \frac{1}{v}\left(1+\eta_{Z}\right) Z_{\mu} Z^{\mu} H \\
& +\frac{\zeta_{Z Z}}{2 v} Z_{\mu \nu} Z^{\mu \nu} H+\frac{\zeta_{A Z}}{v} A_{\mu \nu} Z^{\mu \nu} H
\end{aligned} \\
& +\frac{\widetilde{\zeta}_{Z Z}}{2 v} Z_{\mu \nu} \widetilde{Z}^{\mu \nu} H+\frac{\widetilde{\zeta}_{A Z}}{v} A_{\mu \nu} \widetilde{Z}^{\mu \nu} H
\end{aligned}
$$

Constraints on WWH

-. Analyzed dominant processes for E_{cm} of $250 \& 500 \mathrm{GeV}$.

$$
\left\{\begin{array}{l}
e^{+} e^{-} \rightarrow W W \rightarrow \nu_{e} \bar{\nu}_{e} h(h \rightarrow b \bar{b}) \\
e^{+} e^{-} \rightarrow W W \rightarrow \nu_{e} \bar{\nu} h(h \rightarrow W W \rightarrow 4 q) \\
e^{+} e^{-} \rightarrow Z h \rightarrow q \bar{q} h\left(h \rightarrow W W^{*} \rightarrow q \bar{q} l \bar{\nu} \text { or } 4 q\right) \\
e^{+} e^{-} \rightarrow Z h \rightarrow \nu \bar{\nu} h\left(h \rightarrow W W^{*} \rightarrow 4 q\right)
\end{array}\right.
$$

$$
e^{+} e^{-} \rightarrow W W \rightarrow \nu_{e} \bar{\nu}_{e} h \quad(h \rightarrow b \bar{b})
$$

Fit in three parameters.
-. Inclusion of the norm. only is color.
-. Contours include the shape.

Constraints on WWH

$$
e^{+} e^{-} \rightarrow W W \rightarrow \nu_{e} \bar{\nu}_{e} h \quad(h \rightarrow b \bar{b})
$$

-. Analyzed dominant processes for E_{cm} of $250 \& 500 \mathrm{GeV}$.

$$
\left\{\begin{array}{l}
e^{+} e^{-} \rightarrow W W \rightarrow \nu_{e} \bar{\nu}_{e} h(h \rightarrow b \bar{b}) \\
e^{+} e^{-} \rightarrow W W \rightarrow \nu_{e} \bar{\nu}_{e} h(h \rightarrow W W \rightarrow 4 q) \\
e^{+} e^{-} \rightarrow Z h \rightarrow q \bar{q} h\left(h \rightarrow W W^{*} \rightarrow q \bar{q} l \bar{\nu} / 4 q\right) \\
e^{+} e^{-} \rightarrow Z h \rightarrow \nu \bar{\nu} h\left(h \rightarrow W W^{*} \rightarrow 4 q\right)
\end{array}\right.
$$

Remains the large num. of s-ch ZH (ZZH vertex) that changes the shape

-. The sensitive in ILC full operation 500 GeV gives better sensitivities

$$
\chi_{\text {total }}^{2}=\sum_{j}^{n}\left[\frac{S_{\mathrm{SM}}^{(t)}\left(x_{i}\right) \cdot f_{j i}^{(t) \mathrm{Det}}-S_{\mathrm{BSM}}^{(t)}\left(x_{i} ; \vec{a}_{\mathrm{W}}\right) \cdot f_{j i}^{(t) \mathrm{Det}}+S_{\mathrm{SM}}^{(s)}\left(x_{i}\right) \cdot f_{j i}^{(s) \mathrm{Det}}-S_{\mathrm{BSM}}^{(s)}\left(x_{i} ; \vec{a}_{\mathrm{Z}}\right) \cdot f_{j i}^{(s) \operatorname{Det}}}{\Delta n_{\mathrm{SM}}^{\mathrm{obs}}\left(x_{j}\right)}\right]^{2}
$$ w/250 GeV squeezes the area more.

$$
\begin{aligned}
& +\left[\frac{N_{\mathrm{SM}}^{(t)}-N_{\mathrm{BSM}}^{(t)}\left(\vec{a}_{\mathrm{W}}\right)+N_{\mathrm{SM}}^{(s)}-N_{\mathrm{BSM}}^{(s)}\left(\vec{a}_{\mathrm{Z}}\right)}{\delta \sigma_{\nu \bar{\nu} H}^{(t)} \cdot N_{\mathrm{SM}}^{(t)}}\right]^{2} \\
& +\vec{a}_{\mathrm{Z}}^{\mathrm{T}}\left(C_{\mathrm{ZZH}}^{25 \mathrm{GeV}}\right)^{-1} \vec{a}_{\mathrm{Z}}
\end{aligned}
$$

ZZH constraints covariance matrix

Constraints on VVH

ILC operation scenario of $\boldsymbol{\sim} \mathbf{2 0}$ years
$\sqrt{s}=250+500 \mathrm{GeV}$ with $\int \mathrm{Ldt}=\mathrm{H} 20$ $\left(\eta_{Z}=\frac{v}{\Lambda} a_{Z}, \zeta_{Z Z}=\frac{v}{\Lambda} b_{Z}: \Lambda / v=4.065\right)$

$$
\Delta \mathscr{L}_{h}=-\eta_{h} \lambda_{0} v_{0} h^{3}+\frac{\theta_{h}}{v_{0}} h \partial_{\mu} h \partial^{\mu} h \quad \longleftarrow(\text { Higgs }) \quad \begin{aligned}
& \text { T. Barklow et al., } \\
& \text { PRD 97, } 053004 \text { (2018) }
\end{aligned}
$$

$$
+\eta_{Z} \frac{m_{Z}^{2}}{v_{0}} Z_{\mu} Z^{\mu} h+\frac{1}{2} \eta_{2 Z} \frac{m_{Z}^{2}}{v_{0}^{2}} Z_{\mu} Z^{\mu} h^{2} \longleftarrow \text { (same structure with the SM) }
$$

1 sigma bounds based on the study

$$
+\eta_{W} \frac{2 m_{W}^{2}}{v_{0}} W_{\mu}^{+} W^{-\mu} h+\eta_{2 W} \frac{m_{W}^{2}}{v_{0}^{2}} W_{\mu}^{+} W^{-\mu} h^{2}
$$

$$
+\frac{1}{2}\left(\zeta_{Z Z} \frac{h}{v_{0}}+\frac{1}{2} \zeta_{2 Z} \frac{h^{2}}{v_{0}^{2}}\right) \hat{Z}_{\mu \nu} \hat{Z}^{\mu \nu}+\left(\zeta_{W W} \frac{h}{v_{0}}+\frac{1}{2} \zeta_{2 W} \frac{h^{2}}{v_{0}^{2}}\right) \hat{W}_{\mu \nu}^{+} \hat{W}^{-\mu \nu}
$$

$$
+\frac{1}{2}\left(\zeta_{A A} \frac{h}{v_{0}}+\frac{1}{2} \zeta_{2 A} \frac{h^{2}}{v_{0}^{2}}\right) \hat{A}_{\mu \nu} \hat{A}^{\mu \nu}+\left(\zeta_{A Z} \frac{h}{v_{0}}+\zeta_{2 A Z} \frac{h^{2}}{v_{0}^{2}}\right) \hat{A}_{\mu \nu} \hat{Z}^{\mu \nu}
$$

$$
+\frac{1}{2}\left(\tilde{\zeta}_{Z Z} \frac{h}{v_{0}}+\frac{1}{2} \tilde{\zeta}_{2 Z} \frac{h^{2}}{v_{0}^{2}}\right) \hat{Z}_{\mu \nu} \hat{\tilde{Z}}^{\mu \nu}+\left(\tilde{\zeta}_{W W} \frac{h}{v_{0}}+\frac{1}{2} \tilde{\zeta}_{2 W} \frac{h^{2}}{v_{0}^{2}}\right) \hat{W}_{\mu \nu}^{+} \hat{\tilde{W}}^{-\mu \nu}
$$

$$
\left\{\begin{array}{l}
\eta_{W}=[-0.0080,0.0045] \\
\zeta_{W W}=[-0.0172,0.0088] \\
\tilde{\zeta}_{W W}=[-0.0429,0.0438] \\
\eta_{Z}= \pm 0.0054 \\
\zeta_{Z Z}= \pm 0.0016 \\
\zeta_{A Z}= \pm 0.0010 \\
\tilde{\zeta}_{Z Z}= \pm 0.0027 \\
\tilde{\zeta}_{A Z}= \pm 0.0003
\end{array}\right.
$$

Constraints on VVH, and comparison with HL-LHC

-. ATLAS and CMS report the sensitivity to the VVH couplings.

$$
\sqrt{s}=250+500 \mathrm{GeV} \text { with } \int \mathrm{Ldt}=\mathrm{H} 20
$$

ATLAS (arXiv:1712.02304v2) VVH using $36.1 \mathbf{f b - 1}$

$$
\left(\eta_{Z}=\frac{v}{\Lambda} a_{Z}, \zeta_{Z Z}=\frac{v}{\Lambda} b_{Z}: \Lambda / v=4.065\right)
$$

ATLAS-CONF-2019-029 VVH in SMEFT with 139 fb-1
CMS (arXiv:2104.12152v1) VVH in SMEFT with 137 fb-1
The latest one provides constraints for C :Wilson coefficients.
Interpretation of C to C at the ILC is ongoing.

$$
\begin{aligned}
\mathscr{L}_{0}^{V}= & \left\{\kappa_{\mathrm{SM}}\left[\frac{1}{2} g_{H Z Z} Z_{\mu} Z^{\mu}+g_{H W W} W_{\mu}^{+} W^{-\mu}\right]-\frac{1}{4}\left[\kappa_{H g g} g_{H g g} G_{\mu \nu}^{a} G^{a, \mu \nu}+\tan \alpha \kappa_{A g g} g_{A g g} G_{\mu \nu}^{a} \tilde{G}^{a, \mu \nu}\right]\right. \\
& \left.-\frac{1}{4} \frac{1}{\Lambda}\left[\kappa_{H Z Z} Z_{\mu \nu} Z^{\mu \nu}+\tan \alpha \kappa_{A Z Z} Z_{\mu \nu} \tilde{Z}^{\mu \nu}\right]-\frac{1}{2} \frac{1}{\Lambda}\left[\kappa_{H W W} W_{\mu \nu}^{+} W^{-\mu \nu}+\tan \alpha \kappa_{A W W} W_{\mu \nu}^{+} \tilde{W}^{-\mu \nu}\right]\right\} X_{0}
\end{aligned}
$$

1 sigma bounds based on the study

$$
\begin{aligned}
& \left\{\begin{array}{l}
\eta_{W}=[-0.0080,0.0045] \\
\zeta_{W W}=[-0.0172,0.0088] \\
\tilde{\zeta}_{W W}=[-0.0429,0.0438] \\
\eta_{Z}= \pm 0.0054 \\
\zeta_{Z Z}= \pm 0.0016 \\
\zeta_{A Z}= \pm 0.0010 \\
\tilde{\zeta}_{Z Z}= \pm 0.0027 \\
\tilde{\zeta}_{A Z}= \pm 0.0003
\end{array}\right. \\
& \kappa_{H Z Z}=8.1 \zeta_{Z Z}
\end{aligned}
$$

$$
\begin{array}{ll}
\kappa_{H V V} & \text { assumes } \pm 0.026 @ \text { ILC H20 } \\
\kappa_{A V V} & \text { assumes } \pm 0.044 @ \text { ILC H20 }
\end{array}
$$

-. In the context of the LHC results as of today, the energy scale of the BSM is expected to be much higher than the EW scale, where the EFT is valid.
-. Based on the SMEFT, the model-independent Lagrangian at the ILC is defined, and the sensitivity to the anomalous VVH couplings was tested based on the traditional and robust analysis technique.
-. According to the analysis using all most all of the dominant Higgs production and decay processes, the sensitivity to anomalous VVH at the ILC could reach about 10 times better than that of the HL-LHC.

Based on similar analysis method, the CEPC could give similar sensitivity with the ILC. Beam polarization can disentangle $Z Z H / Z Y H$ at the ILC.
But, $H \rightarrow Z_{Y}$ is also available to access $Z_{Y} H$ alternately at CEPC.
-. New analysis techniques, jet charge and jet flavor identification, have been developed for other physics motivations, which can lead the better sensitivity to the anomalous VVH couplings.

Backup: Potential improvement: jet charge, flavor-tag, ME approach

-. To improve the sensitivity to ZZH, jet charge ID is critical:
The current results to ZZH based on qqH uses $\Delta \Phi$ of $[0-\pi]$ (no jet charge identification)
-. To improve the sensitivity to WWH, flavor ID is critical:
c-tag performance in the study is not good, $\Delta \Phi$ is almost no power to improve the sensitivity to WWH
-. Jet charge Measurement has been developed aiming for identification of Kaon for new physics

Please refer to
Flavor-Tagging of Quark Pairs at e+e- Higgs/Top Factories ${ }^{\|} 0$ @ Higgs2021 by A. Irles

-. c-flavor (even s) identification has been developed

-. Matrix element approach has been also developed aiming for the ultimate sensitivity to the anomalous couplings as ATLAS/CMS does.

Backup: EFT parameters at the ILC

O Dim-6 Effective Field Lagrangian at the ILC

General $S U(2) \times U(1)$ gauge invariant Lagrangian with dimension- 6 operators in addition to the SM.

10 EFT coefficients ($\mathrm{h}, \mathrm{W}, \mathrm{Z}, \gamma$): $\mathrm{C}_{\mathrm{H}}, \mathrm{C}_{\mathrm{T}}, \mathrm{C}_{6}, \mathrm{CWW}_{W}, \mathrm{CWB}^{2}, \mathrm{CBB}^{2}, \mathrm{C}_{3} \mathrm{~W}, \mathrm{CHL}_{\mathrm{HL}}, \mathrm{C}^{\prime} \mathrm{HL}^{2}, \mathrm{C}_{\mathrm{HE}}$
2 EFT coefficients for contact interaction with quarks
$\mathcal{L}_{S M}+\mathcal{L}_{\text {eff }}^{\operatorname{dim} 6}$
5 EFT coefficients for couplings to $\underline{b, c}, \tau, \mu, g$
4 SM parameters: $g, g^{\prime}, v, \lambda$
2 parameters for $\underline{h \rightarrow i n v i s i b l e ~ a n d ~ e x o t i c ~}$

ORetain model independence
\bigcirc Make Z, W and γ relate
\rightarrow Improve precision of Higgs couplings
\rightarrow The LHC situation has >50 EFT coefficients, it is not easy to determine them simultaneously.

O ILC250 provides sufficient observables.
23 parameters can be determined simultaneously

1) Higgs-related observables

$$
\rightarrow \sigma \text { and } \sigma \times \mathrm{BR} \ldots
$$

2) Observables from angular distributions
\rightarrow Test new Lorentz structures...
3) Triple Gauge Couplings from $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-}$
4) Electroweak precision observables
\rightarrow Constrain SM parameters ...
5) Beam polarizations double the number of observables
6) HL-LHC Higgs observables, $\mathrm{BR}(\mathrm{h} \rightarrow \gamma \gamma, \gamma \mathrm{Z})$

Backup: EFT parameters at the ILC

T. Barklow et al.,

PRD 97, 053004 (2018)

$$
\begin{aligned}
\Delta \mathcal{L}= & \frac{c_{H}}{2 v^{2}} \partial^{\mu}\left(\Phi^{\dagger} \Phi\right) \partial_{\mu}\left(\Phi^{\dagger} \Phi\right)+\frac{c_{T}}{2 v^{2}}\left(\Phi^{\dagger} \overleftrightarrow{D^{\mu}} \Phi\right)\left(\Phi^{\dagger} \overleftrightarrow{D_{\mu}} \Phi\right)-\frac{c_{6} \lambda}{v^{2}}\left(\Phi^{\dagger} \Phi\right)^{3} \\
& +\frac{g^{2} c_{W W}}{m_{W}^{2}} \Phi^{\dagger} \Phi W_{\mu \nu}^{a} W^{a \mu \nu}+\frac{4 g g^{\prime} c_{W B}}{m_{W}^{2}} \Phi^{\dagger} t^{a} \Phi W_{\mu \nu}^{a} B^{\mu \nu} \\
& +\frac{g^{\prime 2} c_{B B}}{m_{W}^{2}} \Phi^{\dagger} \Phi B_{\mu \nu} B^{\mu \nu}+\frac{g^{3} c_{3 W}}{m_{W}^{2}} \varepsilon_{a b c} W_{\mu \nu}^{a} W_{\rho}^{b \nu} W^{c \rho \mu} \\
& +i \frac{c_{H L}}{v^{2}}\left(\Phi^{\dagger} \overleftrightarrow{D^{\mu}} \Phi\right)\left(\bar{L} \gamma_{\mu} L\right)+4 i \frac{c_{H L}^{\prime}}{v^{2}}\left(\Phi^{\dagger} t^{a} \overleftrightarrow{D^{\mu}} \Phi\right)\left(\bar{L} \gamma_{\mu} t^{a} L\right) \\
& +i \frac{c_{H E}}{v^{2}}\left(\Phi^{\dagger} \overleftrightarrow{D^{\mu}} \Phi\right)\left(\bar{e} \gamma_{\mu} e\right)
\end{aligned}
$$

After EWSB

$$
\begin{aligned}
\Delta \mathscr{L}_{h}= & -\eta_{h} \lambda_{0} v_{0} h^{3}+\frac{\theta_{h}}{v_{0}} h \partial_{\mu} h \partial^{\mu} h \quad+\eta_{Z} \frac{m_{Z}^{2}}{v_{0}} Z_{\mu} Z^{\mu} h+\frac{1}{2} \eta_{2 Z} \frac{m_{Z}^{2}}{v_{0}^{2}} Z_{\mu} Z^{\mu} h^{2} \quad+\eta_{W} \frac{2 m_{W}^{2}}{v_{0}} W_{\mu}^{+} W^{-\mu} h+\eta_{2 W} \frac{m_{W}^{2}}{v_{0}^{2}} W_{\mu}^{+} W^{-\mu} h^{2} \\
& +\frac{1}{2}\left(\zeta_{Z Z} \frac{h}{v_{0}}+\frac{1}{2} \zeta_{2 Z} \frac{h^{2}}{v_{0}^{2}}\right) \hat{Z}_{\mu \nu} \hat{Z}^{\mu \nu}+\left(\zeta_{W W} \frac{h}{v_{0}}+\frac{1}{2} \zeta_{2 W} \frac{h^{2}}{v_{0}^{2}}\right) \hat{W}_{\mu \nu}^{+} \hat{W}^{-\mu \nu}+\frac{1}{2}\left(\zeta_{A A} \frac{h}{v_{0}}+\frac{1}{2} \zeta_{2 A} \frac{h^{2}}{v_{0}^{2}}\right) \hat{A}_{\mu \nu} \hat{A}^{\mu \nu}+\left(\zeta_{A Z} \frac{h}{v_{0}}+\zeta_{2 A Z} \frac{h^{2}}{v_{0}^{2}}\right) \hat{A}_{\mu \nu} \hat{Z}^{\mu \nu} \\
& +\frac{1}{2}\left(\tilde{\zeta}_{Z Z} \frac{h}{v_{0}}+\frac{1}{2} \tilde{\zeta}_{2 Z} \frac{h^{2}}{v_{0}^{2}}\right) \hat{Z}_{\mu \nu} \hat{\tilde{Z}}^{\mu \nu}+\left(\tilde{\zeta}_{W W} \frac{h}{v_{0}}+\frac{1}{2} \tilde{\zeta}_{2 W} \frac{h^{2}}{v_{0}^{2}}\right) \hat{W}_{\mu \nu}^{+} \hat{\tilde{W}}^{-\mu \nu}
\end{aligned}
$$

PHYS. REV. D 97, 053004 (2018)

The complete set of Feynman diagrams

FIG. 4. Feynman diagrams contributing to the amplitudes for $e^{+} e^{-} \rightarrow$ Zh.

$$
\begin{array}{cc}
\Delta \mathscr{L}=g_{L} \bar{\psi}_{L} \gamma_{\mu} \psi_{L} Z^{\mu}+g_{H Z Z} H Z_{\mu} Z^{\mu} & \Delta \mathscr{L}=\frac{C_{H L}}{\Lambda^{2}} \bar{\psi}_{L} \gamma_{\mu} \psi_{L} Z^{\mu} H \\
i \mathscr{M}=\frac{g_{L} g_{H Z Z}}{s-M_{Z}^{2}}\langle Z H| H Z^{\mu} \bar{\psi}_{L} \gamma_{\mu} \psi_{L}\left|e^{+} e^{-}\right\rangle & i \mathscr{M}=\frac{C_{H L}}{\Lambda^{2}}\langle Z H| \bar{\psi}_{L} \gamma_{\mu} \psi_{L} Z^{\mu} H\left|e^{+} e^{-}\right\rangle
\end{array}
$$

ILC running modes - and Z production

Backup: Impact on the shape in WWH

-. Focus on WWH:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{WWH}}= & 2 M_{\mathrm{W}}^{2}\left(\frac{1}{v}+\frac{a_{\mathrm{W}}}{\Lambda}\right) W_{\mu} W^{\mu} H \quad \begin{array}{c}
\text { Rescaling } \\
\text { the normalization. }
\end{array} \\
& +\frac{b_{\mathrm{W}}}{\Lambda} \hat{W}_{\mu \nu} \hat{W}^{\mu \nu} H+\frac{\widetilde{b}_{\mathrm{W}}}{\Lambda} \hat{W}_{\mu \nu} \widetilde{\hat{W}}^{\mu \nu} H
\end{aligned}
$$

parity-conserving interaction scalar: CP-even interaction
parity-conserving interaction pseudo-scalar: CP-odd interaction

W momentum in the higgs rest

-. a term is the same structure with the SM.
-. b term is a new scalar (Parity=+1) structure
-. bt term is a new pseudo-scaler (Parity= -1) structure
-. Field strength has momentum dependence
the Higgs decay

Backup: Flavor identification

arXiv 1306.6329
ILD

c-flavor ID in $H \rightarrow W^{*} \rightarrow c \bar{x} x \bar{c}$
of the ZH process

