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Our customers: high-energy physics and photon science

High energy physics and photon science demand high(est) energy at low cost.

> Solution: Plasma accelerators — significantly higher acceleration gradients.

Simultaneously, particle colliders have strict demands for luminosity:
(FELs have similar demands for brightness)

High repetition rate High energy efficiency
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Low energy spread Low emittance
(luminosity spectrum, final focusing)

Energy efficiency motivates use of beam-driven plasma acceleration.
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Luminosity distribution across collision energies.
Source: M. Boronat et al., Phys. Lett. B 804, 135353 (2020).

N = Nyall=DB X "DB—WB

Beam-drivers are orders of magnitude more efficient
than laser-drivers (for now)
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Our customers: high-energy physics and photon science

High energy physics and photon science demand high(est) energy at low cost.
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(luminosity spectrum, final focusing)

Develop a self-consistent plasma-accelerator stage
FLASHFORWARD with high efficiency, high quality, and high average power
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FLASHFORWARD»> utilises FLASH superconducting accelerator

Plasma accelerator tightly integrated into facility and benefits from Free-Electron-Laser beam quality

5MeV 150 MeV 450 MeV 1250 MeV

Photo ACC — SCRF modules
cathode BC — Bunch compressors

> FLASH is an FEL user facility

- 10% of beam time dedicated to generic
accelerator research

> Superconducting accelerator based on ILC/XFEL technology

- = 1.25 GeV energy with ~nC charge at few 100 fs bunch duration
- ~2 um trans. norm. emittance

- ~10 kKW average beam power, MHz repetition rate in 10 Hz bursts
- exquisite stability by advanced feedback/feedforward systems

> Unique opportunities for plasma accelerator science
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FLASHFORWARD»> utilises FLASH superconducting accelerator

Plasma accelerator tightly integrated into facility and benefits from Free-Electron Laser beam quality

5MeV 150 MeV 450 MeV 1250 MeV

Photo ACC — SCRF modules
cathode BC — Bunch compressors

25 TW laser
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25 TW LASER (OUTSIDE THE TUNNEL) MATCHING AND FINAL FOCUSSING BROAD- AND NARROW-BAND TDS
SPECTROMETERS

R. D’Arcy et al., Phil. Trans. R. Soc. A 377, 20180392 (2019)
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Advanced collimator system for longitudinal bunch shaping

FLASHFORWARD
NOtCh H
collimator Tail
\‘ I collimator
Head ' Tall
collimator Head \
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NERGY
COLLIMATOR

<

S. Schroder et al.,

' J. Phys. Conf. Ser. 1596 012002 (2020)

Three energy collimators:
(1) Tail (high energy)

(2) Head (low energy)

(3) Central notch (two bunches)

pm-precision movements
allows for precise bunch shaping

(in conjunction with
FLASH compressors and 3.9 GHz cavity)
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Two discharge capillaries provide density-controlled plasma

FLASHFORWARD
J.M. Garland et al.,
N = e bt ) | = > Rev. Sci. Instrum. 92 013505 (2021)
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Two electron spectrometers used for diagnostic purposes

FLASHFORWARD»» beamline features innovative components and methods

Imaging spectrometer

High-resolution, narrow-band screen for mm-mrad
emittance measurements

Low-resolution, broad-band screen for MeV —GeV
energy range

.ml\l\ooo

BROAD- AND NARROW-BAND
SPECTROMETERS
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FLASHFORWARD»>: Beam-driven plasma-wakefield experimentation
FLASHFORWARD

Develop a self-consistent plasma-accelerator stage
with high efficiency, high gquality, and high average power

A v A

High efficiency High beam quality High average power
Transter efficiency Energy-spread preservation Recovery time

Driver depletion Emittance preservation Bunch-train pattern
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FLASHFORWARD»>: Beam-driven plasma-wakefield experimentation
Primary goals of FLASHFORWARD>>

Develop a self-consistent plasma-accelerator stage
with high efficiency, high gquality, and high average power

A v A

High efficiency High beam quality High average power
Transter efficiency Energy-spread preservation Recovery time

Driver depletion Emittance preservation Bunch-train pattern
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Optimal beam loading enables uniform and efficient acceleration

> Problem 1: Compared to RF cavities (Q ~ 104-1010), the electric
fields in a plasma decay very rapidly (Q ~ 1-10).

> The energy needs to be extracted very quickly
—Iideally within the first oscillation.
First oscillation
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Image source: M. F. Gilljiohann et al., Phys. Rev. X9, 011046 (2019)
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Optimal beam loading enables uniform and efficient acceleration

> Problem 1: Compared to RF cavities (Q ~ 104-1019), the electric Beam density (5.0 x 106 cm™)
fields in a plasma decay very rapidly (Q ~ 1-10). S ————
_ Plasma density (5.0 x 10'® cm™)
> The energy needs to be extracted very quickly -5 4 -3 -2 1 0
—Iideally within the first oscillation. :
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Image credit: M. Litos et al., Nature 515, 92 (2014)
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Optimal beam loading enables uniform and efficient acceleration

> Problem 1: Compared to RF cavities (Q ~ 104-1019), the electric Beam density (5.0 x 1076 cm™)
fields in a plasma decay very rapidly (Q ~ 1-10).

> The energy needs to be extracted very quickly
—Iideally within the first oscillation.

R. D'Arcy et al.,
PRL 122, 034801 (2019)
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Optimal beam loading enables uniform and efficient acceleration

Problem 1: Compared to RF cavities (Q ~ 104-1010), the electric
fields in a plasma decay very rapidly (Q ~ 1-10).

The energy needs to be extracted very quickly
—ideally within the first oscillation.

Solution: Beam loading
The trailing-bunch wakefield “destructively interferes” with
the driver wakefield —extracting energy.

Problem 2: To extract a large fraction of the energy, the beam will
cover a large range of phases (~90 degrees or more).

Large energy spread is induced.

Solution: Optimal beam loading
The current profile of the trailing bunch is precisely tailored
to exactly flatten the wakefield.

This requires extremely precise control of the current profile.

FLASHForward provides the tools to do that.

Image credit: M. Tzoufras et al., Phys. Rev. Lett. 101, 145002 (2008)
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High-resolution plasma wakefield sampling demonstrated

Opens a pathway to targeted and precise field manipulation

> Beam itself acts as a probe
— measures in-situ (under actual operation conditions) the effective field acting on beam with pm / fs resolution

Notch
collimator

S. Schrdder et al., Nat. Commun. 11, 5984 (2020)
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High-resolution plasma wakefield sampling demonstrated

Opens a pathway to targeted and precise field manipulation

> Beam itself acts as a probe

— measures in-situ (under actual operation conditions) the effective field acting on beam with pm / fs resolution
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Loading the wakefield and beam shaping flattens the gradient

Direct visualization of electric-field control by wakefield sampling

C.A. Lindstrom et al., PRL 126, 014801 (2021)
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Optimal operating point
PIC simulation

Electric field, E_(GV m™)

-1 | -+ PIC simulation (no trailing bunch)
- TrpyrT i | Full bunch (24% lower density)

45k f’ PIC simulation (full bunch) 25
ol Nearly flat field | 11§ image credit: M. Tzoufras et al., Phys. Rev. Lett. 101, 145002 (2008)
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> Accelerating gradient of 1.3 GV/m
> No charge loss

> Few-percent-level wakefield flattening
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High-quality, efficient acceleration for sustainable applications

Beam-loading facilitates 42% energy-transfer efficiency, 0.2% energy spread with full charge coupling

C.A. Lindstrom et al., PRL 126, 014801 (2021)
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> 0.2% energy spread (input 0.16%)

> Accelerating gradient of 1.3 GV/m
99 (improvement by factor 10 over state-of-the-art)
> No charge loss

> (42+4)% energy transfer efficiency

> Few-percent-level wakefield flattening (improvement by factor 3 over state-of-the-art)
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High repetition rate — How fast can we go?

Problem 3: Future colliders require at least kHz operation with FELs demanding up to MHz — is this possible
with plasma accelerators?

Once the first oscillation is utilised, what happens to the perturbed plasma? For how long does it live?

The time it takes to recover places the most fundamental limit on repetition rate
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High repetition rate — How fast can we go?

Problem 3: Future colliders require at least kHz operation with FELs demanding up to MHz — is this possible
with plasma accelerators?

Once the first oscillation is utilised, what happens to the perturbed plasma? For how long does it live?

The time it takes to recover places the most fundamental limit on repetition rate

Onset of ion motion Collapsing wake First oscillation
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High repetition rate — How fast can we go?

Problem 3: Future colliders require at least kHz operation with FELs demanding up to MHz — is this possible
with plasma accelerators?

Once the first oscillation is utilised, what happens to the perturbed plasma? For how long does it live?
The time it takes to recover places the most fundamental limit on repetition rate

Solution: Experimentally map the recovery process of the plasma
A new diagnostic technique based on the plasma-wakefield process is used to define the maximum

inter-bunch repetition rate

Onset of ion motion Collapsing wake First oscillation
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The recovery time of a plasma-wakefield accelerator

Unperturbed
Plasma

Decaying Wakefield and

Onset of Ion Motion A leading bunch perturbs the plasma by

driving a wake

A second probe-bunch pair arrives >0.77 ns
behind the leading bunch and samples the
plasma at that point in time

The nature of the plasma can be inferred
from the probe-bunch properties after
driving its own wake

The delay of the probe bunch can be

| t th lution
Perturbed changed in order to map out the evolutio

Plasma _
Analogous to pump-probe methodology in

photon science

Trailing Probe
Bunch

Driving Probe
Bunch
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The recovery time of a plasma-wakefield accelerator

R. D'Arcy et al., under review
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Progress in Plasma-Accelerator R&D at >>

Summary and outlook

Develop a self-consistent plasma-accelerator stage
with high efficiency, high quality, and high average power

A v RN

High efficiency High beam quality High average power
M Transfer efficiency M Energy-spread preservation M Recovery time
['] Driver depletion | | Emittance preservation || High repetition rate

Impactful and exciting research programme will help advance plasma accelerators to application readiness



