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Simulation procedures

Figure: Conventional v.s. self-consistent beam-beam simultion with ZL
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Simulation results

Figure: Simulation results w/ and w/O ZL

1 The shift of stable tune area.

2 The squeeze of stable tune area.

3 Decrease of growth rate.
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Cross-wake force model

Figure: Illustration of the evaluation of cross wake force.

The ”cross-wake force”1 has been introduced to explain the coherent beam-beam
instability with a large Piwinski angle without ZL.
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where W
(−)
x (z) is cross-wake function induced by beam-beam interaction.

1K.Ohmi et al., Coherent Beam-Beam Instability in Collisions with a Large Crossing Angle, PRL (2017).
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σ mode and π mode

ρx(z) ≡ ρ(z)x(z)

Assuming σ mode ρ
(+)
x (z) = ρ

(−)
x (z) and π mode ρ

(+)
x (z) = −ρ(−)

x (z), the beam-beam
kick can be expressed by usual formula of a normal wake force for single beam.
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Figure: σ mode v.s. π mode
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Single bunch instability theory

Beam-beam kick,
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1 Ordinary transverse mode coupling instability(TMCI) theory2.

2 Transverse mode coupling method for localized wake force.

For example,

Transverse mode coupling method for localized impedance structures
by Ruggiero3

Discretize the longitudinal phase space (J, φ)4

Dipole modes expaned by azimuthal and radial modes5

...

3 Longitudinal action discretization proposed by Oide6 which includes the incoherent
synchrotron tune shift due to the potential well distortion(longitudinal instability).

2A. Chao, Physics of Collective Beam Instabilities in High Energy Accelerators , New York, 1993.
3F. Ruggiero, Transverse mode coupling instability due to localized structure, Part. Accel. 20, 45 (1986).
4K.Ohmi et al., Coherent Beam-Beam Instability in Collisions with a Large Crossing Angle, PRL (2017).
5K. Nami et al. PhysRevAccelBeams.21.031002.
6K. Oide and K. Yokoya, KEK Report No. 90-10, 1990..
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Longitudinal beam dynamics

Figure: Longitudinal beam dynamics without longitudinal impedance

Figure: Longitudinal beam dynmics with longitudinal impedance
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Action discretization method

Consider the dipole amplitude x(J, φ), px(J, φ) in longitudinal phase, we expand them
as Fourier series and truncate l at ±lmax , and discretize J at J1, J2, ..., JnJ . ,

x(Ji , φ) =

lmax∑
l=−lmax

xl(Ji )e
ilφ, px(Ji , φ) =

lmax∑
l=−lmax

pl(Ji )e
ilφ

We consider the transformation of the discreted dipole moment vector (xl(Ji ), pl(Ji )).

In the arc section,

(
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Action discretization method

At the IP

∆pl (Ji ) = ∓ βx
2π

∑
l′

∑
i′

∆Ji′Wll′ (Ji , Ji′)ψ (Ji′) xl′ (Ji′) ≡ βxMlil′ i′xl′ (Ji′) (4)

or in a more concise form

MW =

(
1 0

βxMlil′ i′ 1

)
(5)

Finally, the stability of the colliding beams is determined by the eigenvalues λ′s of the
revolution matrix M0MW .
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Cross-check without ZL

Figure: Comparision of growth rate v.s. νx without ZL.

The agreement between the two methods is satisfying. This could be a crosscheck for
our formalism.
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Eigenvector without ZL

Figure: Real part of eigenvector xl(Ji ) with fastest growth rate, where νx = 0.546

The excited modes exist only in l with same parity, that is, l = ±1,±3,±5.... and no
for l = 0,±2,±4.... . That is to say, the unstable eigenmode is induced by the coupling
of modes with the same parity, and there is no mode-mixing with different parities
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Growth rate versus tune with ZL

Figure: Growth rate v.s. νx considering the longitudinal wake. Red is for σ mode,
and blue is for π mode.

The gap ∆ν is reduced from 0.014 to 0.011. Noted that νs(J) ≈ 0.011 is the
synchrotron tune of small amplitude particles. The original stable areas become unstable
for both σ mode and π mode.
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Eigenvector with ZL

Figure: Real part of eigenmode with fastest growth rate, where νx = 0.546

As shown before, without considering the effects of impedance, only the same parity
modes would couple with each other. But now, with the distortion of particle’s
trajectory,all modes are excited and could be mixing.
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Bunch population scanning

Eigenvalues as function of bunch population for π mode with longitudinal impedance,
where νx = 0.546. There are two instability thresholds.
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Coherent beam-beam instability considering quadrupole
force

The total cross-wake force induced by beam-beam interaction is composed of two parts:
dipole and quadrupole terms (beam-beam tune-shift term),

Figure: Illustration of the evaluation of cross wake force.
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With beam-beam tune-shift

Figure: Growth rate v.s. νx w/ and w/o beam-beam tune-shift term. Red is for σ
mode, and blue is for π mode.
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Summary

The beam-beam coherent head-tail instability in collision with a large crossing angle is
strongly dependent on the longitudinal beam dynamics. The longitudinal impedance
would distort the distribution and introduce an incoherent synchrotron tune shift.

1 The shift of stable tune area.

2 The squeeze of stable tune area.

3 Modes with different parities could be coupled with each other.
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Thank you for your attention!
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