The Nature of Scalar Meson in QCD Sum Rule

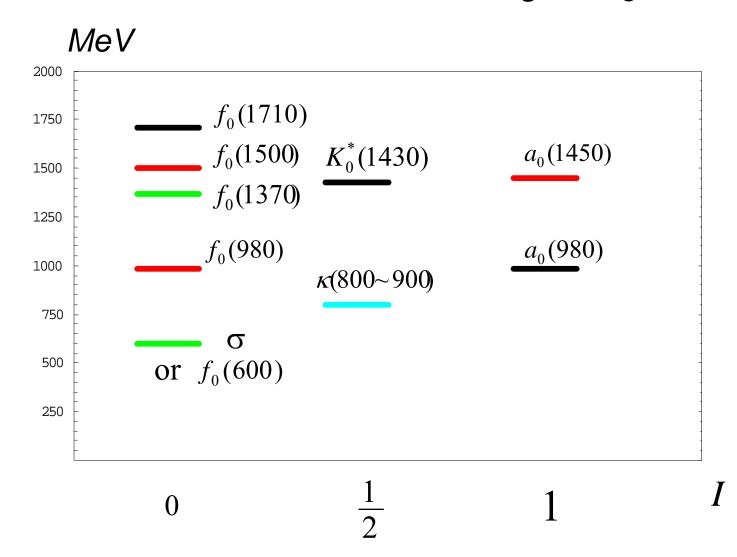
一、概述

• 强子是由夸克构成的,对于由正反夸克 对构成的介子来说,依轨道角动量 *l* 和 夸克总自旋 *S*的不同,会形成不同的介 子

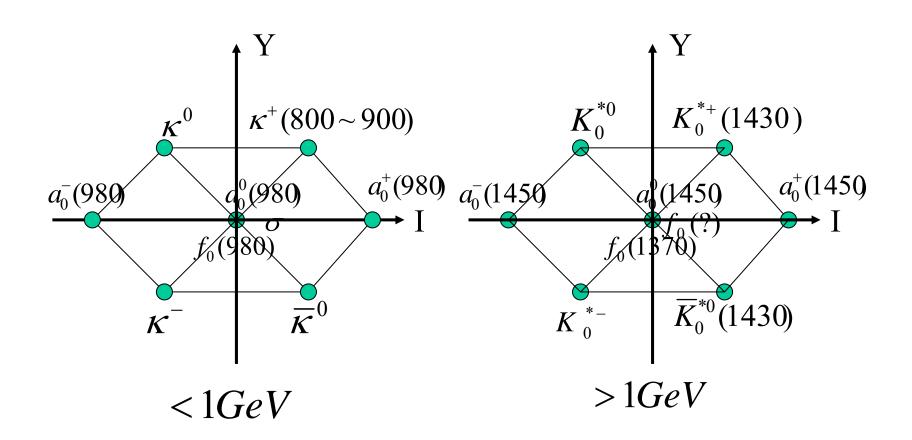
赝标量介子: l=0, S=0, $J^P=0^-$

标量介子: $l=1, S=1, J^P=0^+$

• 实验上所发现的标量介子 $J^P = 0^+$



- 从数量上看,这些标量介子不可能属于 同一八重态(九重态)
- 它们应至少分属两个九重态



• 这些标量介子的成分是什么? meson-meson molecular states?

$$qq\overline{q}\overline{q}$$
?
 $q\overline{q}$?
 $q\overline{q}$?
 $q\overline{q}$ Glueball

- 根据QCD及夸克模型,一定应有夸克-反 夸克构成的标量介子九重态存在
- 质量最低的夸克-反夸克标量介子九重态 在哪里?

> 1GeV? or < 1GeV?

$$K_0^*(1430)$$
 $\kappa(800 \sim 900)$ $a_0(1450)$ $a_0(980)$ $f_0(1370)$ $f_0(980)$

- 用QCD Sum Rule来研究由正反夸克对构成的标量介子的能谱,看一看正反夸克对构成的标量介子基态在哪里
- 对于Y=0, $I_3=0$ 的 $q\bar{q}$ 态来说,因其与胶球有相同的量子数,所以 $q\bar{q}$ 可以与 G 混合
- $I = \frac{1}{2}$ 的态带有奇异数,不会与胶球混合
- 研究 *sq* 的标量束缚态质量谱无须考虑混合 D.S.Du, J.W.Li, **M.Z.Yang**, Phys.Lett.B.619(2005)105

二、质量谱的QCD求和规则

• 两点关联函数关联函数

$$\Pi(q^2) = i \int d^4x \, e^{iq \cdot x} \langle 0|T\{j(x)j^+(0)\}|0\rangle,$$

where $j(x) = \bar{s}(x)q(x)$, $j^{+}(0) = \bar{q}(0)s(0)$.

在关联函数中插入完备集 $\sum |n\rangle\langle n|$

$$\Pi^{h}(q^{2}) = \frac{1}{\pi} \int \frac{ds \, \hat{I}_{m} \Pi(s)}{s - q^{2}},$$

$$2\hat{I}_m\Pi(s) = \sum 2\pi\delta(s - m_n^2)\langle 0|j(0)|n\rangle\langle n|j^+(0)|0\rangle.$$

• 定义标量介子S的衰变常数

标量介子质量

$$\langle 0|j(0)|S\rangle = m_S f_S,$$

• 于是关联函数可表示为

$$\Pi^{h}(q^{2}) = \frac{m_{S}^{2} f_{S}^{2}}{m_{S}^{2} - q^{2}} + \frac{1}{\pi} \int_{s^{0}}^{\infty} \frac{ds \, \rho^{h}(s)}{s - q^{2}},$$

高阶态和连续态的贡献

• 另一方面,关联函数通过算符乘积展开

$$\Pi^{\text{QCD}}(q^{2}) = i \int d^{4}x \, e^{iq \cdot x} \langle 0 | T \{j(x)j^{+}(0)\} | 0 \rangle
= C_{0}I + C_{3} \langle 0 | \bar{\Psi}\Psi | 0 \rangle + C_{4} \langle 0 | G^{a}_{\alpha\beta} G^{a\alpha\beta} | 0 \rangle
+ C_{5} \langle 0 | \bar{\Psi}\sigma_{\alpha\beta} T^{a} G^{a\alpha\beta}\Psi | 0 \rangle
+ C_{6} \langle 0 | \bar{\Psi}\Gamma\Psi\bar{\Psi}\Gamma'\Psi | 0 \rangle + \cdots,$$
Wilson Coefficients

Wilson Coefficients

• 把关联函数按凝聚量纲由低到高重新表示为

$$\Pi^{\text{QCD}}(q^2) = \frac{1}{\pi} \int \frac{ds \, \rho^{\text{pert}}}{s - q^2} + \rho_3^{\text{nonp}} + \rho_4^{\text{nonp}} + \rho_5^{\text{nonp}} + \rho_6^{\text{nonp}} + \cdots$$
凝聚的贡献

• 把两次计算的关联函数列等式

$$\Pi^h(q^2) = \Pi^{QCD}(q^2)$$

• 即

$$\frac{m_S^2 f_S^2}{m_S^2 - q^2} + \frac{1}{\pi} \int_{s^0}^{\infty} \frac{ds \, \rho^h(s)}{s - q^2}
= \frac{1}{\pi} \int \frac{ds \, \rho^{\text{pert}}}{s - q^2} + \rho_3^{\text{nonp}} + \rho_4^{\text{nonp}} + \rho_5^{\text{nonp}} + \rho_6^{\text{nonp}} + \cdots$$

• 高阶态和连续态的贡献近似为

$$\frac{1}{\pi} \int_{s^{0}}^{\infty} \frac{ds \rho^{h}(s)}{s - q^{2}} = \frac{1}{\pi} \int_{s^{0}}^{\infty} \frac{ds \rho^{pert}(s)}{s - q^{2}}$$

• Borel变换

$$\hat{B}_{|p^2,M^2} f(q^2) = \lim_{\substack{n \to \infty \\ q^2 \to -\infty \\ -q^2/n = M^2}} \frac{(-q^2)^n}{(n-1)!} \frac{\partial^n}{\partial (q^2)^n} f(q^2).$$

压低高量纲凝聚和连续态的贡献

• 质量和衰变常数的求和规则

$$m_S = \sqrt{\frac{R_1}{R_2}}, \qquad f_S = \frac{1}{m_S} \sqrt{e^{m_S^2/M^2} R_2},$$

• 其中

$$R_{1} = \frac{1}{\pi} \int_{(m_{1}+m_{2})^{2}}^{s^{0}} ds \, s \rho^{\text{pert}}(s) e^{-s/M^{2}} + M^{4} \left[\frac{\partial (M^{2} \hat{B} \rho_{3}^{\text{nonp}})}{\partial M^{2}} \right] + M^{4} \left[\frac{\partial (M^{2} \hat{B} \rho_{4}^{\text{nonp}})}{\partial M^{2}} \right]$$

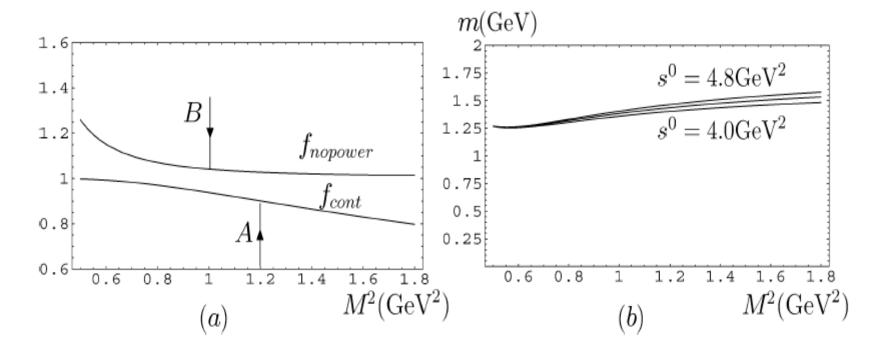
$$+ M^{4} \left[\frac{\partial (M^{2} \hat{B} \rho_{5}^{\text{nonp}})}{\partial M^{2}} \right] + M^{4} \left[\frac{\partial (M^{2} \hat{B} \rho_{6}^{\text{nonp}})}{\partial M^{2}} \right],$$

$$R_{2} = \frac{1}{\pi} \int_{(m_{1}+m_{2})^{2}}^{s^{0}} ds \, \rho^{\text{pert}}(s) e^{-s/M^{2}} + M^{2} \hat{B} \rho_{3}^{\text{nonp}} + M^{2} \hat{B} \rho_{4}^{\text{nonp}} + M^{2} \hat{B} \rho_{5}^{\text{nonp}} + M^{2} \hat{B} \rho_{6}^{\text{nonp}},$$

三、分析和讨论

- 域值 s⁰ 需要根据能否出现稳定的Borel参数平台来确定
- 当 s^0 较低时未在 κ (800~900) 质量附近发现可靠的稳定平台,且此时连续态和高量纲算符的贡献太大
 - 这说明夸克-反夸克的QCD求和规则无法与 $\kappa(800 \sim 900)$ 相容

• 当 $s^0 = 4.0$ —4.8 GeV² 时,发现存在稳定可靠的平台



• 此时高激发态和高量纲算符凝聚的贡献都在10%以下

域值 s⁰ = 4.0-4.8 GeV², Borel参数 1.0 < M² < 1.2 GeV²,
 QCD求和规则的结果

$$m(s\bar{q}) = 1.410 \pm 0.049 \text{ GeV},$$

误差:

Borel参数: 1.8%

s⁰ 不确定性: 2.0%

α_s 高阶修正: 2.2%

凝聚参数变化: <0.6%

- 一方面正反夸克对的QCD求和规则不能与κ(800~900)相容
- 另一方面,QCD求和规则给出的 $s\bar{q}$ 标量 束缚态质量与 $K_0^*(1430)$ 一致
- 所以我们必须接受 $\kappa(800 \sim 900)$ 不是 $s\bar{q}$ 束缚态, $K_0^*(1430)$ 为 $s\bar{q}$ 标量束缚态的基态

• 检验(1)

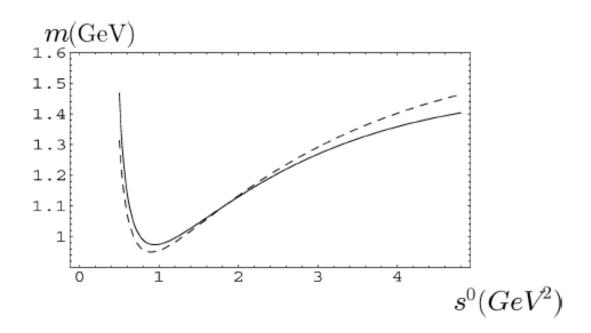


Fig. 3. The possible mass result by varying the value of the threshold s^0 . The solid curve is for the Borel parameter $M^2=1.0~{\rm GeV^2}$, dashed one for $M^2=1.2~{\rm GeV^2}$.

 $m(s\bar{q}) > 960 \text{ MeV } \overline{\text{m}} \text{E}791 \, m_{\kappa} = 797 \pm 19 \pm 42 \text{ MeV}$

Decay Constant

$$f_{K_0(1430)}(\mathrm{GeV})$$
0.8
0.6
0.4
0.2
0.6 0.8 1 1.2 1.4 1.6 1.8
 $M^2(GeV^2)$

$$f(K_0^*(1430)) = 427 \pm 85 \text{ MeV}.$$

The variation of s^0 yields $\pm 30\%$ uncertainty for the decay constant, α_s correction gives $\pm 20\%$, the uncertainties caused by the condensate parameters and the variation of Borel parameter are less than 0.3% and 0.1%, respectively. All the uncertainties are added quadratically to give the error bar in the above result.

检验②

如果将 $\kappa(800\sim900)$ 和 $K_0^*(1430)$ 同时放入 $s\bar{q}$ 道的QCD求和规则中去作拟合,则结果会变为

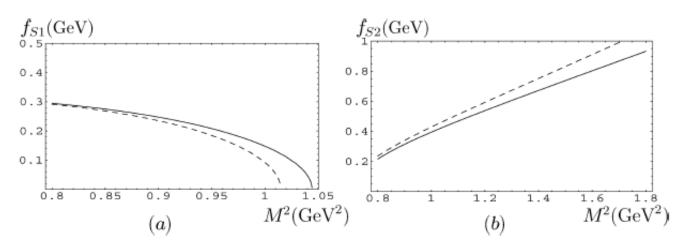


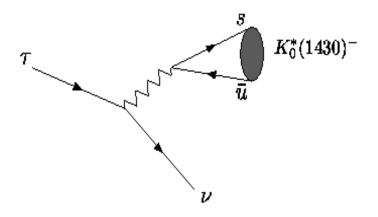
Fig. 5. The decay constants in two-resonance ansatz below 2 GeV. The solid curve is for $s^0 = 4.0 \text{ GeV}^2$, and the dashed one for $s^0 = 4.8 \text{ GeV}^2$. (a) The decay constant of the low resonance κ (900). (b) The decay constant of the higher resonance K_0^* (1430).

QCD Sum Rule 的分析表明:

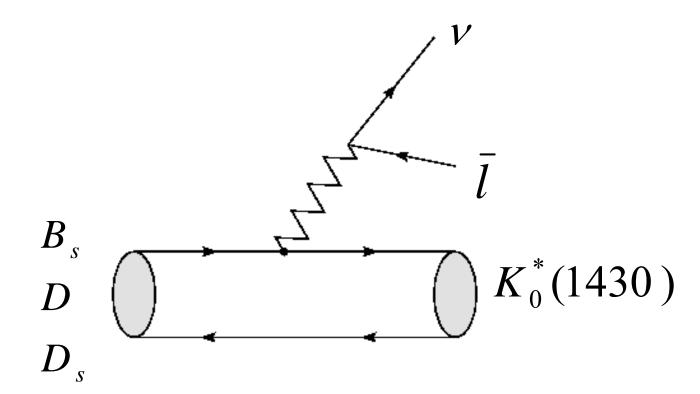
- $\kappa(800 \sim 900)$ 不是 $s\bar{q}$ 的标量束缚态
- K_0^* (1430) 是 $s\bar{q}$ 标量束缚态的基态

一些可能的实验检验

τ轻子,B和D介子的半轻子衰变



Feynman diagram for $\tau \to K_0^*(1430)\nu$



Decay Mode	Branching Ratio
$\tau \to K_0^* (1430)^- \nu_{\tau}$	$(7.9 \pm 3.1) \times 10^{-5}$
$B_s^0 \to K_0^* (1430)^- \bar{l} \nu$	$(4.8 \pm 2.2) \times 10^{-6}$
$D^0 \to K_0^* (1430)^- \bar{l} \nu$	$(3.2 \pm 0.7) \times 10^{-4}$
$D^+ \to \overline{K}_0^* (1430)^0 \bar{l} \nu$	$(8.2\pm1.7)\times10^{-4}$
$D_s^+ \to K_0^* (1430)^0 \bar{l} \nu$	$(3.4 \pm 1.1) \times 10^{-5}$

M.Z. Yang, Phys. Rev. D 73, 034027 (2006)

Summary

- QCD Sum Rule 的分析表明
 - 1) $\kappa(800\sim900)$ 不是 $s\bar{q}$ 的标量束缚态
 - 2) K_0^* (1430) 是 $s\bar{q}$ 标量束缚态的基态
- 计算了在 τ 轻子,B和D介子的半轻子衰变中产生 K_0^* (1430) 的分支比