

中國科学院為能物招加完施 Institute of High Energy Physics Chinese Academy of Sciences

Measurement of $B^{0}(s) \rightarrow \pi^{0}\pi^{0}$ at CEPC

Yuexin Wang, Manqi Ruan

CEPC Physics and Detector Plenary Meeting, July 21, 2021

Outline

- 1. Motivation
- 2. Separation of B⁰ and Bs
- 3. Results at a benchmark detector setup
- 4. Dependence on b-tagging performance
- 5. Dependence on ECAL energy resolution
- 6. Summary

Motivation

From physics aspect

- " $B \rightarrow \pi \pi$ puzzle", the measured branching ratio of the $B^0 \rightarrow \pi^0 \pi^0$ is significantly larger than the theoretical predictions based on the factorization theory.
- Bs $\rightarrow \pi^0 \pi^0$, a pure annihilation process, BR ~10⁻⁷, has not been observed.
- Tera-Z at CEPC with 10¹¹ B0 and 10¹⁰ Bs, at least 1-2 orders larger than Belle-II

Modes	DATA [1]	SCET [2]	QCDF	pQCD
$B^+ \rightarrow \pi^+ \pi^0$	5.5 ± 0.4	5.20 ± 2.71	$6.00^{+3.76}_{-3.07}$	$4.27^{+1.85}_{-1.47}$
$B^0 \rightarrow \pi^+ \pi^-$	5.12 ± 0.19	5.40 ± 1.95	$8.90^{+5.55}_{-4.71}$	$7.67^{+3.27}_{-2.67}$
$B^0 o \pi^0 \pi^0$	1.59 ± 0.26	0.84 ± 0.46	$0.30_{-0.26}^{+0.46}$	$0.24_{-0.07}^{+0.09}$
$B_s^0 \to \pi^+ \pi^-$	0.7 ± 0.1	-	$0.26^{+0.10}_{-0.09}$	$0.52^{+0.21}_{-0.18}$
$B_s^0 \to \pi^0 \pi^0$	< 210	-	$0.13_{-0.05}^{+0.05}$	$0.21_{-0.09}^{+0.10}$

Table 1: Experimental mesaurements and theoretical predictions of the branching ratios (in unit of 10^{-6}) of $B \rightarrow \pi\pi$ system. The soft collinear effective theory (SCET), QCD factorization (QCDF), and perturbative QCD (pQCD) are three common theoretical techniques to deal with the hadronic B-meson decays.

From detector aspect

Clear dependence on the detector performance

- ECAL energy resolution
- b-tagging

The Fast Simulation Analysis

Separation of B⁰ and Bs

 $m_{B^0} = 5279.63 \pm 0.15 MeV$

 $m_{B_e^0} = 5366.89 \pm 0.19 MeV$

A 2σ separation requires ECAL energy resolution better than 2%/√E⊕0.3%

A benchmark detector setup for $B^{0}(s) \rightarrow \pi^{0}\pi^{0}$ measurement

ECAL energy resolution ~3%/√E⊕1% CEPC baseline b-tagging with 80% efficiency and 90% purity

$f(b \to B^0)$	0.407 ± 0.007	
$f(b \rightarrow B_s^0)$	0.101 ± 0.008	
$Br(B^0 \to \pi^0 \pi^0)$	1.59×10^{-6}	
$Br(B_s^0 \to \pi^0 \pi^0)$	3×10^{-7} SM pre	diction
$Br(\pi^0 \to \gamma \gamma)$	98.823%	

Cut chain	$B^0 \to \pi^0 \pi^0$	$B_s^0 \to \pi^0 \pi^0$	qar q	$u\bar{u}+d\bar{d}+s\bar{s}$	cī	$bar{b}$	$\sqrt{S + B}/S$
Total concreted	101112	8048	7e11	4.285e11	1.203e11	1.512e11	
Total generated	191115	0940	(100.00%)	(61.21%)	(17.19%)	(21.60%)	
b-tagging	152800	7159	1.34539e11	3.64225e9	9.93678e9	1.2096e11	
$(\epsilon_{b,c,uds \to b} = 80\%, 8.26\%, 0.85\%)$	152890	/156	(100.00%)	(2.70%)	(7.38%)	(89.92%)	
$\gamma\gamma o \pi^0$	147885	6959	134270678121	3604997126	9908325272	120757355723	
Lower $E_{\pi^0} > 6 \text{ GeV}$	92188	4398	15487349997	843612892	1598239684	13045497420	
Higher $E_{\pi^0} > 14 \text{ GeV}$	87011	4149	2534464124	307686545	314766931	1912010648	
$E_{\pi^0\pi^0} > 22 \text{ GeV}$	86745	4133	2233495276	289735018	281660057	1662100201	
$\theta_{\pi^0\pi^0} < 23^{\circ}$	77579	3644	825533789	119057502	102062343	604413944	
$m_{\pi^0\pi^0} \in (5.2163, 5.3429) \text{ GeV}$	60420	1015	20280	5664	1555	12170	0.4341%
$(1.5 \sigma_{m_{R0}} = 1.5 \times 0.0422 \text{GeV})$	09430	1015	20389	3004	1555	13170	$\pm\ 0.0121\%$
$m_{\pi^0\pi^0} \in (5.3110, 5.4228) \text{ GeV}$							6.4708%
$(1.3 \sigma_{m_{R^0}} = 1.3 \times 0.0430 \text{GeV})$	24197	3028	11174	4632	1082	5461	$\pm 0.3558\%$
S							

Cut chain	$B^0 \to \pi^0 \pi^0$	$B_s^0 \to \pi^0 \pi^0$	q ar q	$u\bar{u}+d\bar{d}+s\bar{s}$	$c\bar{c}$	$bar{b}$	$\sqrt{S + B}/S$
Total generated	101113	80/8	7e11	4.285e11	1.203e11	1.512e11	
Total generated	191115	0740	(100.00%)	(61.21%)	(17.19%)	(21.60%)	
b-tagging	152800	7159	1.34539e11	3.64225e9	9.93678e9	1.2096e11	
$(\epsilon_{b,c,uds \to b} = 80\%, 8.26\%, 0.85\%)$	132890	/138	(100.00%)	(2.70%)	(7.38%)	(89.92%)	
$\gamma\gamma o \pi^0$	147885	6959	134270678121	3604997126	9908325272	120757355723	
Lower $E_{\pi^0} > 6 \text{ GeV}$	92188	4398	15487349997	843612892	1598239684	13045497420	
Higher $E_{\pi^0} > 14 \text{ GeV}$	87011	4149	2534464124	307686545	314766931	1912010648	
$E_{\pi^0\pi^0} > 22 \text{ GeV}$	86745	4133	2233495276	289735018	281660057	1662100201	
$\theta_{\pi^0\pi^0} < 23^{\circ}$	77579	3644	825533789	119057502	102062343	604413944	
$m_{\pi^0\pi^0} \in (5.2163, 5.3429) \text{ GeV}$	60420	1015	20280	5664	1555	12170	0.4341%
$(1.5 \sigma_{m_{R0}} = 1.5 \times 0.0422 \text{GeV})$	09430	1015	20389	3004	1555	13170	$\pm 0.0121\%$
$m_{\pi^0\pi^0} \in (5.3110, 5.4228) \text{ GeV}$							6.4708%
$(1.3 \sigma_{m_{R^0}} = 1.3 \times 0.0430 \text{GeV})$	24197	3028	11174	4632	1082	5461	$\pm 0.3558\%$

(b) $\theta_{\pi^0\pi^0}$ vs $E_{\pi^0\pi^0}$ in $B^0 \to \pi^0\pi^0$ (left), $B^0_s \to \pi^0\pi^0$ (middle), and $Z \to q\bar{q}$ (right) events.

Cut chain	$B^0 \to \pi^0 \pi^0$	$B_s^0 \to \pi^0 \pi^0$	qar q	$u\bar{u}+d\bar{d}+s\bar{s}$	$c\bar{c}$	$bar{b}$	$\sqrt{S + B}/S$
Total gaparatad	101112	8048	7e11	4.285e11	1.203e11	1.512e11	
Iotal generated	191115	0940	(100.00%)	(61.21%)	(17.19%)	(21.60%)	
b-tagging	152900	7159	1.34539e11	3.64225e9	9.93678e9	1.2096e11	
$(\epsilon_{b,c,uds \to b} = 80\%, 8.26\%, 0.85\%)$	132890	/158	(100.00%)	(2.70%)	(7.38%)	(89.92%)	
$\gamma\gamma ightarrow\pi^0$	147885	6959	134270678121	3604997126	9908325272	120757355723	
Lower $E_{\pi^0} > 6 \text{ GeV}$	92188	4398	15487349997	843612892	1598239684	13045497420	
Higher $E_{\pi^0} > 14 \text{ GeV}$	87011	4149	2534464124	307686545	314766931	1912010648	
$E_{\pi^0\pi^0} > 22 \text{ GeV}$	86745	4133	2233495276	289735018	281660057	1662100201	
$\theta_{\pi^0\pi^0} < 23^{\circ}$	77579	3644	825533789	119057502	102062343	604413944	
$m_{\pi^0\pi^0} \in (5.2163, 5.3429) \text{ GeV}$ (1.5 $\sigma_{m_{R^0}} = 1.5 \times 0.0422 \text{ GeV}$)	69430	1015	20389	5664	1555	13170	0.4341% ± 0.0121%
$m_{\pi^0\pi^0} \in (5.3110, 5.4228) \text{ GeV}$ (1.3 $\sigma_{m_{B_s^0}} = 1.3 \times 0.0430 \text{ GeV}$)	24197	3028	11174	4632	1082	5461	6.4708% ± 0.3558%

Cut chain	$B^0 \to \pi^0 \pi^0$	$B_s^0 \to \pi^0 \pi^0$	qar q	$u\bar{u}+d\bar{d}+s\bar{s}$	$c\bar{c}$	$bar{b}$	$\sqrt{S + B}/S$
Total generated	101113	80/8	7e11	4.285e11	1.203e11	1.512e11	
Total generated	191115	0940	(100.00%)	(61.21%)	(17.19%)	(21.60%)	
b-tagging	152800	7159	1.34539e11	3.64225e9	9.93678e9	1.2096e11	
$(\epsilon_{b,c,uds \to b} = 80\%, 8.26\%, 0.85\%)$	132890	/156	(100.00%)	(2.70%)	(7.38%)	(89.92%)	
$\gamma\gamma ightarrow \pi^0$	147885	6959	134270678121	3604997126	9908325272	120757355723	
Lower $E_{\pi^0} > 6 \text{ GeV}$	92188	4398	15487349997	843612892	1598239684	13045497420	
Higher $E_{\pi^0} > 14 \text{ GeV}$	87011	4149	2534464124	307686545	314766931	1912010648	
$E_{\pi^0\pi^0} > 22 \text{ GeV}$	86745	4133	2233495276	289735018	281660057	1662100201	
$\theta_{\pi^0\pi^0} < 23^{\circ}$	77579	3644	825533789	119057502	102062343	604413944	
$m_{\pi^0\pi^0} \in (5.2163, 5.3429) \text{ GeV}$	60420	1015	20280	5664	1555	12170	0.4341%
$(1.5 \sigma_{m_{R^0}} = 1.5 \times 0.0422 \text{GeV})$	09430	1015	20389	3004	1555	15170	$\pm\ 0.0121\%$
$m_{\pi^0\pi^0} \in (5.3110, 5.4228) \text{ GeV}$	0.1107	2020		1(22	1000		6.4708%
$(1.3 \sigma_{m_{B_s^0}} = 1.3 \times 0.0430 \text{GeV})$	24197	3028	11174	4632	1082	5461	$\pm\ 0.3558\%$

8

Optimized

mass window

Dependence on b-tagging performance

3 b-tagging conditions, at 3%/√E⊕1%

Accuracy

$B^0 \rightarrow \pi^0 \pi^0$									
			0 0 0	0 0 0		_			
b-tagging	Mass window (GeV)	n σ_{m_B}	$B^0 \to \pi^0 \pi^0$	$B_s^0 \to \pi^0 \pi^0$	qar q	$u\bar{u}+dd+s\bar{s}$	$c\bar{c}$	bb	$\sqrt{S} + B/S$
No b-tagging $(\epsilon_{b,c,uds \to b} = 100\%, 100\%, 100\%)$	(5.2290, 5.3303)	1.2	80570	922	595976	564730	17595	13652	1.0216% ± 0.0337%
CEPC baseline b-tagging ($\epsilon_{b,c,uds \rightarrow b} = 80\%, 8.26\%, 0.85\%$)	(5.2163, 5.3429)	1.5	69430	1015	20389	5664	1555	13170	0.4341% ± 0.0121%
Ideal b-tagging $(\epsilon_{b,c,uds \rightarrow b} = 100\%, 0\%, 0\%)$	(5.2163, 5.3429)	1.5	86788	1269	16462	0	0	16462	0.3725% ± 0.0056%
			$Bs \rightarrow \pi^{o}$	ͽπο					
b-tagging	Mass window (GeV)	n σ_{m_B}	$B^0 \to \pi^0 \pi^0$	$B_s^0 \to \pi^0 \pi^0$	$q\bar{q}$	$u\bar{u}+d\bar{d}+s\bar{s}$	cī	bĪ	$\sqrt{S + B}/S$
No b-tagging ($\epsilon_{b,c,uds \to b} = 100\%, 100\%, 100\%$)	(5.3110, 5.4228)	1.3	30246	3785	564884	544965	13094	6826	20.4443% ± 0.7425%
CEPC baseline b-tagging ($\epsilon_{b,c,uds \rightarrow b} = 80\%, 8.26\%, 0.85\%$)	(5.3110, 5.4228)	1.3	24197	3028	11174	4632	1082	5461	6.4708% ± 0.3558%
Ideal b-tagging $(\epsilon_{b,c,uds \rightarrow b} = 100\%, 0\%, 0\%)$	(5.3110, 5.4228)	1.3	30246	3785	6826	0	0	6826	5.3398% ± 0.1432%

2~3 times No b-tagging → CEPC baseline b-tagging → Ideal b-tagging

b-tagging is essential to reduce the hard combinatory background in non-b events

Dependence on b-tagging performance

Figure 4: Number (left) and energy spectrum of π^0 in the form of log(E) in $Z \to q\bar{q}$ events with different quark flavors.

Dependence on ECAL energy resolution

with CEPC baseline b-tagging

Figure 13: Accuracy of $B^0 \to \pi^0 \pi^0$ (left) and $B_s^0 \to \pi^0 \pi^0$ (right) vs σ_{m_B} (GeV).

Summary

 $B^{0}(s) \rightarrow \pi^{0}\pi^{0}$ are important to understand

- factorization theory (in $B \rightarrow \pi \pi$ puzzle)
- annihilation mechanism (Bs $\rightarrow \pi^0 \pi^0$)

Fast Simulation is used to study the dependence of $B_{(s)} \rightarrow \pi^0 \pi^0$ measurement on b-tagging:

essential to reduce the hard combinatory background in non-b events

Accuracy at 3%/√E⊕1%	$B^0 \rightarrow \pi^0 \pi^0$	Bs → π⁰π⁰	
No b-tagging	1.02%	20.44%	2~3 times
CEPC baseline b-tagging	0.43%	6.47%	

ECAL energy resolution:

 A 2σ separation of B0 and Bs requires ECAL energy resolution better than 2%/√E⊕0.3%

Accuracy with CEPC baseline b-tagging	$B^0 \rightarrow \pi^0 \pi^0$	Bs $\rightarrow \pi^0 \pi^0$	
17%/√E⊕1%	~1.20%	~20%	3 times
3%/√E⊕1%	0.43%	6.47%	improvement
2%/√E⊕0.3%	~0.40%	3%	

Backup

Kinematic Fit

at 3%/√E⊕1% ECAL resolution

Signal peak gets sharpened after Kinematic Fit

Figure 14: Separation power (overlapping area) at different ECAL resolutions wo/wi kinematic fit.

Fast Simulation Strategy

Currently focus on the energy response

- Smear *E_y* with *EM* resolution
- Simply 10MeV E_γ threshold

Some effects not included yet...

- Photon angular resolution (~0.5 mrad, ~1cm)
- Di-photon separation (π^0 <30GeV, >9 mrad, >1.6cm)
- Detector acceptance (|Cosθ|<0.99)

Values in parentheses are results of baseline detector as a reference