

CEPC Trigger System Investigation

Fangyi Guo, Yaquan Fang, Weidong Li, Zhen'an Liu

Institute of High Energy Physics Chinese Academy of Sciences

Introduction

- Experimental conditions in CEPC:
 - High Lumi. Higgs mode $\sqrt{s} = 240 GeV$: $\mathcal{L} = 5 \times 10^{34} cm^{-2} s^{-1}$, bunch spacing 700ns.
 - High Lumi. Z mode @ $\sqrt{s} = 91.2 GeV$: $\mathcal{L} = 101.1 \times 10^{34} cm^{-2} s^{-1}$, bunch spacing 27ns.
 - Beam background: pair production dominant (<u>Haoyu Shi @ CEPC workshop</u>).

Physics Process @ Higgs mode	σ (pb) @ $\sqrt{s} = 240 GeV$	Rate (Hz)	Background Type	Hit Densitv(<i>cm</i> ⁻² ·	
ffH signal	0.203	0.10		BX^{-1})	
ee->ee	930	46.5			
ee->qq	54.1	2.7	Pair production	1.91	
ee->WW	16.7	0.84			
ee->μμ/ττ	5.3	0.26	Synchrotron	0.026	
Total signal		~50	Radiation		
Beam bunch		1.43×10 ⁶	Radiative Bhabha	0.34	
Physics Process @ Z mode	σ (nb) @ $\sqrt{s} =$ 91.2 <i>GeV</i>	Rate (Hz)	Beam Gas	0.9607	
ee->qq	30.20	30.5k	Beam Thermal	0.02	
ee->mumu	1.51	1.53k	Photon	0.02	
Total signal		<35k	Total	3 2567	2021/
Beam bunch		37×10 ⁶	IOLAI	5.2507	

ATLAS Trigger System

- ATLAS: much more complex condition, but can learn about trigger strategy
 - L1 trigger:
 - L1Calo, L1Muon, L1Topo.
 - Hardware based.
 - Provides a rate reduction from40 MHz to 100 kHz.
 - High-level trigger:
 - ~1.5 kHz rate, event tagging.
 - Separately for e/γ , muon, tau, jet, E_T^{mis} ...

• FCC-ee: seems also in very beginning stage.

ATLAS High Level Trigger (1)

- High Level Trigger (HLT) is software trigger running on a farm of standard computers connected by network devices.
- ATLAS developed HLT Selection Software (HLTSSW) in the Athena offline software framework.
- HLTSSW is responsible for accepting events from the previous trigger level and for event selection or rejection.
- The package responsible for the event selection is called Steering in which the stepwise algorithm execution takes place.

ATLAS High Level Trigger (2)

Components of Steering

- Signatures: corresponding to a set of physics criteria sufficient to trigger the event
- Sequences: carrying the information needed by the Steering in order to perform the algorithm sequencing
- Signatures and Sequences are grouped together in Tables
- A Trigger Element represents a "hypothesis" has to be confirmed or rejected and is uniquely identifies by a string, e.g.
 - "e50i " + "e50i " indicating two electrons with 50
 GeV with isolation criteria applied

CEPC Trigger design

- Similar 2-level trigger system for CEPC:
 - L1 trigger:
 - Hardware based, use CEPC-v4 detector design. But use simulation to study the criteria and performance.
 - Only consider beamstrahlung pair production process (dominant) at the beginning, investigate the trigger logic, trigger cell, etc.
 - Target: recording rate <100 kHz @ Z mode, and >99% event efficiency.
 - HLT event filter:
 - Reuse ATLAS HLT Steering for configuration and run control.
 - Develop a set of fast reconstruction algorithm (can use full reconstruction for performance investigation).
 - Specific in each physics channel, make a HLT menu list.
 - Target: high efficiency in all physics analyses.

2021/7/2

Calorimeter L1 trigger as beginning

- Consider ECAL and HCAL first: low background, simple clustering logic.
 - ECAL: baseline CEPC_v4 SiW sampling calorimeter.
 - 8 staves, each stave has 5 modules. Consider the whole module as trigger cell first. Will optimize the trigger cell size later.
 - Energy threshold for hit: 50keV to reject noise.
 - 2 global calibration constant for first 20 layers and later respectively.
 - Total deposited energy, energy in leading module (hottest module), number of fired module.
 - HCAL: GRPC based SDHCAL.
 - Raw energy in HcalHit.
 - Total deposited energy, energy in leading module (hottest module), number of fired module.

Calorimeter trigger

Beam Background:

Calorimeter trigger

Physics samples

Can easily reject the beam background process

Calorimeter trigger

Efficiency for physics process and beam background:

• Cut: $E_{max} > 2 \text{GeV} \mid \mid N_{hcal} > 0$.

Process @ H mode	Efficiency	Rate	Process @ Z mode	Efficiency	Rate		
Beamstrahlung	0.21%	3 kHz	Beamstrahlung	0	0 Hz		
bhabha	99.96 %	46.5 Hz	bhabha	99.98%			
ee->mumu	94.04%	0.24 Hz	ee->mumu	99.26%	1.52 kHz		
ee->tautau	99.50%	0.26 Hz	ee->tautau	99.92 %	~1.5 kHz		
ee->qq	100%	2.7 Hz	ee->qq	100%	30.5 kHz		
ee->nn	17.94%		*Didn't find precise $\sigma(bhabha)$ and $\sigma(ee \rightarrow \tau\tau)$.				
ee->ZH->eeX	99.96%		Suppose $\sigma(ee \rightarrow \tau\tau) = \sigma(ee \rightarrow \mu\mu)$.				
ee->ZH->mumuX	99.92 %						
ee->ZH->tautauX	99.88%						
ee->ZH->qqX	99.96%						
ee->ZH->nnX	99.76%						

2021/7/2

CEPC Trigger System design

Hardware-based L1:

- Design for each sub-detector with its structure.
- Reduce recording rate to a acceptable level.
- Software preparation for HLT:
 - Event data model
 - Fast reconstruction algorithms: tracking and clustering algorithms
 - High Level Trigger database
 - Support of parallel computing on GPU, FPGA etc.
- Physics performance study:
 - HLT menu and event efficiency for each process.

